Typing less common ovarian tumors: A training tool based on a pattern-based algorithm applied to a set of 20 virtual slides.

Détails

ID Serval
serval:BIB_DFF6D9160249
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Typing less common ovarian tumors: A training tool based on a pattern-based algorithm applied to a set of 20 virtual slides.
Titre de la conférence
12th European Congress on Digital Pathology
Auteur⸱e⸱s
Vjigen S., Saravia M., Granger P., Devouassoux M., de Leval L., Fiche M.
Adresse
Paris, France; 18-21 June 2014
Statut éditorial
Publié
Date de publication
2014
Langue
anglais
Résumé
Context: Ovarian tumors (OT) typing is a competency expected from pathologists, with significant clinical implications. OT however come in numerous different types, some rather rare, with the consequence of few opportunities for practice in some departments.
Aim: Our aim was to design a tool for pathologists to train in less common OT typing.
Method and Results: Representative slides of 20 less common OT were scanned (Nano Zoomer Digital Hamamatsu®) and the diagnostic algorithm proposed by Young and Scully applied to each case (Young RH and Scully RE, Seminars in Diagnostic Pathology 2001, 18: 161-235) to include: recognition of morphological pattern(s);
shortlisting of differential diagnosis; proposition of relevant immunohistochemical markers. The next steps of this project will be: evaluation of the tool in several post-graduate training centers in Europe and Québec; improvement of its design based on evaluation results; diffusion to a larger public.
Discussion: In clinical medicine, solving many cases is recognized as of utmost importance for a novice to become an expert. This project relies on the virtual slides technology to provide pathologists with a learning tool aimed at increasing their skills in OT typing. After due evaluation, this model might be extended to other
uncommon tumors.
Création de la notice
14/07/2014 10:35
Dernière modification de la notice
20/08/2019 17:04
Données d'usage