Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling.
Détails
Télécharger: BIB_DAC507BE36F7.P001.pdf (20556.31 [Ko])
Etat: Public
Version: Author's accepted manuscript
Etat: Public
Version: Author's accepted manuscript
ID Serval
serval:BIB_DAC507BE36F7
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling.
Périodique
Cell
ISSN
1097-4172 (Electronic)
ISSN-L
0092-8674
Statut éditorial
Publié
Date de publication
2015
Peer-reviewed
Oui
Volume
163
Numéro
7
Pages
1730-1741
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.
Mots-clé
Animals, Astrocytes/metabolism, Dentate Gyrus/metabolism, Encephalomyelitis, Autoimmune, Experimental/immunology, Encephalomyelitis, Autoimmune, Experimental/physiopathology, Humans, Learning, Memory, Mice, Multiple Sclerosis/physiopathology, Piperidines, Receptors, N-Methyl-D-Aspartate/metabolism, Receptors, Tumor Necrosis Factor, Type I/metabolism, Signal Transduction, Tumor Necrosis Factor-alpha/metabolism
Pubmed
Web of science
Open Access
Oui
Création de la notice
24/12/2015 13:14
Dernière modification de la notice
20/08/2019 15:59