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SUMMARY 

 

The occurrence of cognitive disturbances upon CNS inflammation or infection has been 

correlated to increased levels of the cytokine tumour necrosis factor-α (TNF). To-date, 

however, no specific mechanism via which this cytokine could alter cognitive circuits has 

been demonstrated. Here we show that local increase of TNFα in the hippocampal dentate 

gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-

neuron signaling cascade that results in persistent functional modification of hippocampal 

excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic 

alteration and contextual learning-memory impairment observed in experimental autoimmune 

encephalitis (EAE), an animal model of Multiple Sclerosis (MS). This process may contribute 

to the pathogenesis of cognitive disturbances in MS as well as other CNS conditions 

accompanied by inflammatory states or infections. 
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INTRODUCTION 

 

Synaptic activity is subject to various types of control, including regulatory inputs from 

surrounding glial cells. The release of gliotransmitters and factors from astrocytes induces 

synaptic modulation in cognitive circuits (reviewed in Araque et al. (2014)) and could 

contribute to cognitive function (Halassa et al., 2009; Han et al., 2012; Lee et al., 2014; 

Suzuki et al., 2011). An astrocyte-synapse modulatory pathway was described in the 

hippocampal dentate gyrus (DG) by which synaptically-activated astrocyte G protein-coupled 

receptors (GPCR) stimulate, via glutamate release, NR2B-containing NMDA receptors 

located in presynaptic excitatory fibers (pre-NMDAR, Jourdain et al. (2007)), resulting in 

transient strengthening of entorhinal cortex (EC)-hippocampal DG excitatory synapses 

(Jourdain et al., 2007), a circuit implicated in contextual learning and memory (Denny et al., 

2014; Liu et al., 2012). Surprisingly, the glial regulatory pathway is itself controlled by the 

cytokine TNF (Santello et al., 2011). Moreover, TNF exerts additional controls at 

hippocampal synapses, such as on trafficking of AMPA (Beattie et al., 2002) and GABAA 

receptors (Pribiag and Stellwagen, 2013), emerging as a key physiological regulator of 

hippocampal synaptic function. Therefore, it is important to ask what happens to the 

hippocampal cognitive circuit when TNF increases above local homeostatic levels (Santello 

and Volterra, 2012), as occurs in the CNS in a variety of medical conditions linked to 

inflammation or infection (Clark et al., 2010).  

Observations in both humans and animals indicate a link between increased TNF levels and 

cognitive alterations (Swardfager and Black, 2013; Yirmiya and Goshen, 2011), but data are 

descriptive and no study to date has identified the specific mechanisms. Here, starting from 

the identified characteristics of astrocytic modulation of DG synapses (Jourdain et al., 2007; 

Santello et al., 2011), and the specific observation that TNF levels above a certain threshold 
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(>300 pM) trigger glutamate release from astrocytes (Bezzi et al., 2001; Domercq et al., 2006; 

Santello et al., 2011), we asked whether such a condition can affect excitatory transmission at 

perforant path-granule cell (PP-GC) hippocampal synapses. We find that high (600 pM) but 

not low (60 pM) TNF concentrations persistently alter the functional properties of this 

synaptic circuit, acting via TNFR1 and a presynaptic mechanism involving NR2B-containing 

NMDAR. We also show that the same synaptic alteration, together with impaired contextual 

memory processing, is present in a murine model of multiple sclerosis (MS), a pathology 

often presenting with cognitive disturbances (Chiaravalloti and DeLuca, 2008). Finally, taking 

advantage of a transgenic mouse model, we directly demonstrate that both synaptic and 

cognitive impairments in the murine MS model depend to a large extent on activation of 

TNFR1 in astrocytes. 

 

 

 

RESULTS 

 

Increased TNF persistently changes excitatory transmission in a hippocampal 

cognitive circuit. 

To establish whether an increased local level of TNF affects cognitive circuits, we initially 

compared the effects produced on excitatory EC-DG synapses by rapid (10 s) puffs of 

exogenous TNF, applied at the estimated basal concentration (60 pM, Santello et al. (2011)) 

or at a 10-fold higher concentration (600 pM, Fig. 1). We used this experimental approach to 

evaluate the confined effects of the cytokine in the outer/middle dentate molecular layer 

(OML/MML, Fig. 1A), and to directly link the observed effect to the used concentration. 

Application of 60 pM TNF did not produce any detectable change in basal synaptic activity 

(mean frequency, amplitude, and kinetics of AMPAR-dependent miniature post-synaptic 

excitatory currents (mEPSCs)) in dentate GCs within 30 min (Fig. 1A-C and Fig. S1). In 
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contrast, application of 600 pM TNF produced progressive, strong increase in synaptic 

activity that reached plateau within 10 min and persisted unchanged after 30 min (and, in a 

few longer experiments, also after 50-60 min, data not shown). This long-lasting effect of the 

cytokine affected mEPSC frequency selectively, without changing mEPSC amplitude or 

kinetics (Fig. 1A-C and Fig. S1A), suggesting a presynaptic mechanism. When applied via 

prolonged bath incubation (1-2.5 h), 600 pM TNF, however, in addition to mEPSC 

frequency, also increased mEPSC amplitude, albeit slightly (Fig. S1B), suggesting that its 

action at excitatory synapses is both dose- and time-dependent. These recordings were 

performed in young mice (P17-25), but comparable effects were observed in adult animals 

(P60-90, Fig. 1D) ruling out that the TNF effect is a developmental phenomenon. Increased 

mEPSC frequency in GCs predicts an enhanced EC drive to the DG. To verify this, we 

recorded EPSCs evoked by lateral PP stimulation (eEPSC) in individual GCs (Fig. 1E-F). 

Brief puffs of 600 pM TNF, but not 60 pM, induced long-lasting increase in eEPSC 

amplitude and parallel change in short-term plasticity, denoted by reduced paired-pulse 

facilitation upon two consecutive stimuli. We conclude that high TNF persistently enhances 

glutamate release probability at presynaptic PP terminals, thereby producing aberrant 

excitability of hippocampal GCs. 

 

The TNF effect requires activation of TNFR1 and ifenprodil-sensitive NMDAR 

Given that TNF above 300 pM triggers glutamate release from astrocytes and that astrocytic 

glutamate transiently strengthens GC synapses via activation of NR2B-containing pre-

NMDAR (Bezzi et al., 2001; Jourdain et al., 2007; Santello et al., 2011), we tested whether 

the long-lasting synaptic effect of elevated TNF was sensitive to the NR2B antagonist, 

ifenprodil. Indeed, in the presence of this drug, 600 pM TNF failed to change mEPSC 

frequency (Fig. 2A). To then check whether TNF activates NR2B-NMDAR persistently, we 
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applied ifenprodil at the peak of the synaptic effect of the cytokine. The NMDAR antagonist 

was now ineffective at reversing the TNF increase in mEPSC frequency (Fig. 2B). 

Therefore, the long-lasting synaptic action of TNF necessitates NR2B-NMDAR activation, 

but only during its induction. We next hypothesized a role for TNFR1, given that specific 

TNFR1 agonist antibodies mimic the glutamate-releasing action of TNF in astrocytes (Bezzi 

et al., 2001). When we applied 600 pM TNF to hippocampal slices from tnfr1-/- mice (Rothe 

et al., 1993), the cytokine failed to produce any increase in mEPSC frequency (Fig. 2C), 

although basal activity at GC synapses was normal (mEPSC frequency: wild-type: 1.63 ± 0.23 

Hz (n = 11); tnfr1-/- : 1.87 ± 0.28 (n = 4), p = 0.57; amplitude: wild-type: 7.91 ± 0.74 pA; 

tnfr1-/- : 6.57 ± 0.57, p = 0.32, unpaired t-test). Taken together, these data confirm that TNFR1 

plays a necessary role in the synaptic effect of TNF and suggest that, at increased levels, the 

cytokine stimulates astrocyte signalling via this receptor.  

 

tnfr1 knockout mice that conditionally re-express the receptor in astrocytes selectively 

To establish that elevated TNF indeed affects synaptic function via astrocyte signalling, we 

generated a new double transgenic mouse model, the hGFAPcreT2/tnfr1cneo/cneo mouse. To 

obtain this model we crossed mice with TNFR1 conditionally deleted in all cell types 

(tnfr1cneo/cneo, Victoratos et al. (2006)), which behave as functional tnfr1 knockout mice and 

lack any response to 600 pM TNF at GC synapses (data not shown), with mice allowing 

TNFR1 re-expression selectively in astrocytes via tamoxifen (TAM)-inducible cre 

recombination driven by the human glial fibrillary acidic protein promoter (hGFAPcreT2, 

Hirrlinger et al. (2006), details in Fig. 3A). The efficiency and specificity of astrocytic 

recombination in the hippocampal DG was determined using hGFAPcreT2/tnfr1cneo/cneo mice 

expressing the ROSA-EYFP reporter (Srinivas et al., 2001) (Fig. 3B). Young (P22) and adult 

(P90) mice, studied 13 and 25 days after the first TAM injection, respectively, yielded similar 
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results. In 12 slices from 4 P90 mice we counted a total of 1680 EYFP+ cells, most of which 

displayed the typical morphology of protoplasmic astrocytes and were distributed patchily, 

both in the dentate ML and in the hilus. These cells were also positive for the astrocytic 

marker glutamine synthetase (GS+/EYFP+ cells), and represented 37% of the total astrocytic 

population (GS+ cells). About 10% of the EYFP+ cells were confined to the subgranular zone 

(SGZ), most likely representing stem cells and neuronal precursors. In the MML/OML where 

PP-GC synapses lie, 99.3% (714 cells) of the EYFP+ cells were GS+, representing resident 

astrocytes, while 0.7% (5 cells) were NeuN+ or GS-, representing immature GCs sending 

growing dendrites. No reporter expression was detected in mice injected with corn oil (OIL), 

the TAM vehicle (Fig. S2), confirming that cre activity is specifically induced by TAM. The 

above results were corroborated by genomic PCR analysis of TAM-induced tnfr1 

recombination in FACS-sorted populations of NeuN+ cells (no recombination) and NeuN- 

cells (prominent recombination) obtained from hGFAPcreT2/tnfr1cneo/cneo mouse brains (Fig. 

3C and Fig. S3). Therefore, hGFAPcreT2/tnfr1cneo/cneo mice are a valid model to investigate 

the contribution of astrocyte signalling to the actions of TNF. 

 

Astrocyte-selective TNFR1 expression largely reconstitutes the synaptic effect of TNF 

We next investigated whether TNF has an effect at PP-GC synapses in TAM-injected 

hGFAPcreT2/tnfr1cneo/cneo mice with TNFR1 expression functionally reconstituted selectively 

in astrocytes. Experiments were conducted 10-11 days after TAM onset. Puff of 600 pM 

TNF locally in the MML/OML significantly increased mEPSC frequency in GCs (Fig. 4A). 

The cytokine effect was slow and persistent, as observed in wild-type mice (Fig. 1B), but less 

pronounced, possibly because only part of the astrocytic population re-expresses TNFR1 (Fig. 

3B). In contrast, application of TNF to slices from OIL-injected hGFAPcreT2/tnfr1cneo/cneo 

mice (global tnfr1 knockouts, no TAM-induced recombination) produced no synaptic effect 
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(Fig. 4B). Any unspecific effect of TAM was also excluded, since in slices from TAM-

injected tnfr1cneo/cneo mice, in which TAM cannot induce recombination, TNF did not affect 

mEPSC activity (Fig. 4C). Therefore, expression of TNFR1 exclusively in GFAP-positive 

cells faithfully reproduces the persistent effect of TNF on mEPSC frequency observed in 

wild-type mice.  

 

Cognitive impairment accompanied by local inflammation and enhanced TNFα levels in 

the hippocampus in a mouse model of multiple sclerosis 

Next we evaluated whether the identified astrocytic cascade triggered by high TNF and 

causing persistent alteration of a cognitive synaptic circuit, is activated in a defined 

pathological condition and contributes to cognitive pathogenesis. We focused on multiple 

sclerosis (MS) because: (a) about 50% of MS patients suffer from cognitive disturbances 

(Chiaravalloti and DeLuca, 2008) and present anatomical/functional alterations in cognitive 

areas, including hippocampal DG (Gold et al., 2010); (b) in both MS patients and animal 

models of the pathology, notably experimental autoimmune encephalomyelitis (EAE), 

TNF/TNFR1 signalling is implicated in pathogenesis (Eugster et al., 1999; Gregory et al., 

2012; Kassiotis and Kollias, 2001). Our studies were performed in the EAE mouse model, 

using an adoptive transfer induction protocol (AT-EAE, Codarri et al. (2011); see 

Experimental Procedures), which allows the EAE CNS pathology to develop effectively also 

in TNFR1-deficient mice. We selected a cognitive test assessing functioning of the EC-DG 

circuitry, contextual fear conditioning (Anagnostaras et al., 2001; Denny et al., 2014; Liu et 

al., 2012) and investigated in adult C57BL/6J mice (P60-90) the effects of AT-EAE in its 

early phase (days 6 and 7 after transfer of autoimmune T cells (6-7 dpi), when classical EAE 

symptoms leading to ascending flaccid paralysis are absent (Fig. S5). An initial activity test 

(AT) excluded any confounding motor or emotional deficits due to AT-EAE (Fig. 5A). 
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Moreover, lack of effect on locomotor activity, freezing or rearing, indicated that motor 

function, exploration and normal anxiety state, respectively, were intact (Fig. S6). 

Subsequently, the mice underwent fear conditioning. Both control (sham-treated) and AT-

EAE mice learned proficiently and acquired conditioned fear across the session, with AT-

EAE mice showing a trend to lower freezing (Fig. 5A). The distance moved during 

electroshock was used as a measure of pain sensitivity and there was no effect of AT-EAE 

(Fig. S6). The next day we measured expression of long-term contextual memory. Only 

control mice exhibited the expected level of fear expression that they acquired on day 6. AT-

EAE mice, in contrast, displayed a marked deficit in contextual memory (Fig. 5A). To 

investigate if this deficit was associated with the presence of a local pathology, we next 

performed immunohistochemistry experiments using leukocyte and microglia markers in 

hippocampal tissue (Fig. 5B). Compared to controls, AT-EAE mice (8-14 dpi) showed an 

accumulation of infiltrating leukocytes at the border between 3rd ventricle and DG and CA3 

parenchyma. Moreover, within the parenchyma, microglia displayed the reactive phenotype, 

with enlarged cell bodies and shortened processes. The amount of reactive and/or infiltrating 

cells decreased progressively from the regions contacting the 3rd ventricle to the more distal 

ones, like CA1 and CA2. For simplicity, we refer to this pathology as “local inflammation”. 

We also measured TNF protein levels in punches of hippocampal tissue obtained (8 dpi) 

from the same mice studied in the contextual memory test (Fig. 5C). The local level of TNF 

was increased 8-fold in AT-EAE mice compared to controls. The increase was specific to 

dorsal hippocampus, the region bordering the 3rd ventricle, which is integral to the contextual 

learning and memory circuitry (Anagnostaras et al., 2001). Therefore, at a stage of EAE that 

is fully asymptomatic in terms of motor pathology (8 dpi), mice present with overt local 

inflammatory pathology and enhanced TNFα levels in the hippocampus that could account for 

the observed contextual memory defect.  
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Altered hippocampal excitatory transmission in AT-EAE: protective effect of ifenprodil.  

 We next checked the state of the synaptic circuitry supporting contextual memory in AT-

EAE mice (P60-90, 8-14 dpi). The paired-pulse ratio of eEPSCs at PP-GC synapses was 

significantly reduced compared to controls, indicative of an increased glutamate release from 

PP terminals. Consistently, the synaptic input-output relationship was altered, with 

significantly greater eEPSC amplitudes evoked by the same stimulation intensity (Fig. 6A). 

These defects strongly resemble those induced by high TNF in younger mice (Fig. 1E-F). In 

keeping, AT-EAE mice also displayed significantly higher mEPSC activity in GCs than 

controls (Fig. 6B). The augmentation was most prominent in mEPSC frequency (34%), less 

pronounced in amplitude (16%), whereas kinetics were unchanged (rise-time: p = 0.19; 

decay-time: p = 0.47, (n = 16) unpaired t-test). Given that ifenprodil prevents the increase in 

mEPSC frequency induced by TNF in young mice (Fig. 2A), we tested whether the drug 

was effective also in adult AT-EAE mice. In mice treated with ifenprodil in vivo during AT-

EAE induction (see details in Supplementary Experimental Procedures), mEPSC frequency in 

GCs was lower than in untreated AT-EAE mice, and comparable to that in controls (Fig. 6C). 

However, when ifenprodil was applied acutely to slices from untreated AT-EAE mice, the 

drug failed to decrease mEPSC frequency (before ifenprodil: 2.51 ± 0.16 Hz; after ifenprodil: 

2.16 ± 0.18 Hz; n = 8; p = 0.09, paired t-test). These data suggest that NR2B-containing 

NMDAR participate in the induction (but not maintenance) of the persistent change of PP-GC 

excitatory transmission induced by AT-EAE. Intriguingly, the in vivo treatment with 

ifenprodil did not counteract the mEPSC amplitude increase observed in AT-EAE mice (Fig. 

6C), suggesting that this component of the synaptic change is NR2B-independent. 
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Causal role of astrocyte TNFR1 signaling in the hippocampal synaptic alterations and 

cognitive impairment induced by AT-EAE.  

To determine whether the synaptic changes observed in AT-EAE mice depend on TNF 

acting via astrocyte TNFR1 signalling, we next induced AT-EAE in TAM- or OIL-treated 

adult hGFAPcreT2/tnfr1cneo/cneo mice (See Experimental Procedures for temporal details). 

mEPSC frequency in GCs of TAM-treated AT-EAE mice (astrocyte TNFR1 re-expression) 

was significantly higher than in their OIL-treated counterparts (Fig. 7A) and similar to that 

seen in wild-type AT-EAE mice (Fig. 7B, p = 0.1, unpaired t-test). mEPSC amplitude did not 

differ, however, from that of wild-type AT-EAE mice (p = 0.14, ANOVA followed by post-

hoc comparisons). The effect on mEPSC frequency was not due to TAM per se, because 

TAM-treated AT-EAE tnfr1cneo/cneo mice (no recombination) did not show any increased 

mEPSC frequency (Fig. 7B). All four transgenic groups developed a similar pattern of local 

inflammation in the hippocampal DG, apparently indistinguishable from that seen in wild-

type AT-EAE mice (compare Figs. 7C and 5B), indicating that the TNFR1-dependent 

synaptic changes are triggered downstream of the local inflammatory reaction. To investigate 

whether astrocyte TNFR1 signalling is also responsible for impaired contextual memory in 

AT-EAE mice, we studied three groups of AT-EAE mice: TAM- or OIL-treated 

hGFAPcreT2/tnfr1cneo/cneo and TAM-treated tnfr1cneo/cneo. At 5 dpi, mice were given an open 

field test which excluded any group difference in behaviours relevant to motor function, 

anxiety and exploration (Fig. S7). At 6 dpi, contextual fear conditioning was conducted. All 

three groups demonstrated acquisition of freezing (Fig. 7D), with OIL-treated 

hGFAPcreT2/tnfr1cneo/cneo mice and TAM-treated tnfr1cneo/cneo mice exhibiting a similar 

amount of conditioning, consistent with the absence of any TAM effect. TAM-treated 

hGFAPcreT2/tnfr1cneo/cneo mice exhibited proportionally less acquisition of freezing relative to 

the other two groups. This deficit was not due to reduced sensitivity to the electroshock 
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because all groups moved the same distance during electroshock (Fig. S7). At 7 dpi, mice 

were tested for fear expression. TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice showed a trend 

to decreased freezing relative to the other two groups (Fig. 7D, middle), which was 

proportional to the decreased fear acquisition of the previous day. At 8 dpi, in a second fear 

expression test, TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice exhibited further reduction of 

fear expression and significantly less expression than the two other groups (Fig. 7D, right). 

These data indicate a cognitive phenotype in TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice 

similar to that observed in wild-type AT-EAE mice although the latter presented lower initial 

learning deficit and faster-onset memory deficit, differences that could be due to intrinsic 

variability of the AT-EAE protocol across experiments. We exclude other confounding 

factors because a second open field test conducted at 9 dpi confirmed lack of locomotor and 

exploratory behavioural differences between groups (data not shown). We conclude that 

astrocyte TNFR1 expression is required for both functional alteration of the EC-DG synaptic 

circuit and contextual learning and memory deficit in AT-EAE mice.  

 

 

DISCUSSION 

 

Our study links a local increase in TNFα in the hippocampus to synaptic and cognitive 

dysfunction via astrocyte signalling. This astrocytic pathway is activated in EAE, an animal 

model of multiple sclerosis, and is necessary for the development of the contextual memory 

deficit observed and thus its delineation may reveal new therapeutic targets against cognitive 

decline (discussed below).  

 

Astrocyte TNFR1 is required for induction of synaptic and cognitive defects. 
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In EAE, activated microglia and infiltrating macrophages controlled by CD4+ T cells are the 

most likely cause of local TNFα increase in the DG (Fig. 5B; Renno et al. (1995)), whereas 

downstream activation of TNFR1 in astrocytes appears to be the critical event for induction of 

the core synaptic and behavioural phenotype. This is demonstrated by reconstitution of the 

phenotype in hGFAPcreT2/tnfr1cneo/cneo mice, functional tnfr1 knockouts in which TNFR1, 

via TAM-induced cre recombination, is re-expressed exclusively in GFAP-positive cells. 

Astrocytes represent the only population of such cells that we observed at the time of our 

experiments (10-22 days from the start of recombination) in the dentate OML/MML where 

excitatory PP-GC synapses are located. Recombination in the DG occurs also in the much 

smaller population of SGZ neural stem cells, but expression of TNFR1 in these cells and in 

the derived neuronal precursors and immature GCs very unlikely contributes to the TNFα-

dependent phenotype because: (a) different from astrocytes, these cells lie distally from PP-

GC synapses (25 days after the start of recombination those with growing dendrites able to 

reach the OML/MML were 0.7% of the resident astrocytic population undergoing 

recombination); (b) full integration of newborn GCs into the excitatory network as mature 

GCs requires 8 weeks (Toni et al., 2007), and in any case these cells may contribute to 

contextual memory formation only after 4 weeks of maturation (Gu et al., 2012), a time-frame 

incompatible with the timing of our experiments. 

 

Pathological TNFα contributes to the synaptic alterations: signaling mechanism 

TNFα produces persistent change in excitatory transmission only when its concentration 

increases up to levels that are specific to pathological states. In the early phases of AT-EAE, 

we measured an 8-fold increase in tissue TNFα levels in the dorsal hippocampus. This 

increase resembles in proportion the 10-fold increase that we used to mimic pathological (600 

pM) versus physiological (60 pM) TNFα levels when applying the exogenous cytokine locally 
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in the DG. In absolute value, 600 pM could represent a concentration close to the one reached 

by the cytokine during EAE, because at this concentration exogenous TNFα produced 

synaptic changes very similar, in both quality and quantity, to those observed in AT-EAE 

mice. While this value is much higher than the tissue concentration that we measured, it could 

mimic the TNFα concentration sensed by astrocytes locally, which may be orders of 

magnitude higher than the average concentration in the tissue (Wang et al., 2011). Regardless, 

600 pM exogenous TNFα and the endogenous cascade operating in AT-EAE appear to act via 

the same mechanism, as both enhance mEPSC frequency via astrocyte TNFR1 and an 

ifenprodil-sensitive mechanism. The latter data strongly suggests that TNFα activates at PP-

GC synapses the same pathway triggered by astrocyte GPRC agonists in physiological 

conditions, eventually resulting in stimulation of NR2B-containing pre-NMDAR (Jourdain et 

al., 2007; Santello et al., 2011), although the TNFα-induced activation must be different 

because it leads to long-lasting and irreversible modifications of synaptic activity. TNFα 

(upon prolonged incubation in normal mice) and the endogenous cascade of AT-EAE produce 

another common effect, a small increase in mEPSC amplitude. This effect is ifenprodil-

insensitive, and therefore mechanistically different from the astrocyte-mediated effect, which 

is clearly presynaptic. It could be, in contrast, post-synaptic, consistent with the reported 

capacity of TNFα to promote surface insertion of AMPAR subunits at dendritic spines via 

stimulation of neuronal TNFR1 (Stellwagen et al., 2005). The contribution of this latter 

mechanism to the synaptic and cognitive phenotype in AT-EAE remains to be defined given 

the substantial restoration of the phenotype upon TNFR1 re-expression selectively in 

astrocytes. 

  

Local malfunction of the entorhinal cortex-hippocampal excitatory circuit 
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The TNFα/TNFR1-dependent synaptic changes identified here lead to alteration of the input-

output relationship in the EC-DG circuit, which is critically involved in contextual memory 

processing (Liu et al., 2012; Denny et al, 2014). Accordingly, we find altered contextual 

learning and memory performance in AT-EAE mice with increased TNFα levels in dorsal 

hippocampus. A persistently increased excitatory drive may reduce the dynamic range and 

impair long-term potentiation (LTP) (Goussakov et al., 2000; Pascual et al., 2005), a defect 

already observed in the DG with TNFα concentrations similar to those used in this study 

(Cunningham et al., 1996), and likely to cause abnormal processing of learning and memory-

related information (Chapman et al., 1999; Tombaugh et al., 2002). Definitive proof of the 

causative role played by the observed synaptic alterations could be achieved by reducing the 

abnormal excitatory PP input to GCs in AT-EAE mice in vivo, e.g. optogenetically, and 

showing consequent amelioration of the cognitive deficit. Such deficit appears in temporal 

overlap with a local inflammation pathology restricted to the hippocampal areas surrounding 

the 3rd ventricle, notably the DG (Fig 5B, large field). This suggests that the cognitive 

phenotype is locally-generated and not due to a generalized inflammatory state of the brain, 

although it does not exclude other sites of local inflammation in other brain regions at these 

stages of the pathology (Haji et al., 2012), nor that other behavioral processes, e.g. auditory 

fear, might be impacted (Acharjee et al., 2013). Putting all the above data together, we 

propose that a causal chain links EAE local inflammation to synaptic alteration and cognitive 

dysfunction via the action of TNFα and its astrocyte TNFR1. In this context, our data bring 

together a number of sparse recent observations suggesting that TNFα is involved in the 

synaptic alterations observed in EAE and other CNS pathology models (Centonze et al., 2009; 

Haji et al., 2012; Xu et al., 2010; Yang et al., 2013) and that enhanced TNFα levels are 

associated with the manifestation of cognitive defects (Belarbi et al., 2012; Gabbita et al., 
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2012; Terrando et al., 2010, reviewed in Clark et al. 2010; Swardfager and Black 2013; but 

see Han et al. 2013).  

 

Relevance for cognitive dysfunction in MS and other medical conditions 

While cognitive disturbances involving hippocampal alterations (Gold et al., 2010) affect a 

large number of MS patients (Chiaravalloti and DeLuca, 2008), the responsible mechanisms 

have remained elusive. The present findings provide a plausible mechanistic basis and also 

suggest that the mechanism responsible for cognitive dysfunction is distinct from the one 

causing the motor symptoms. In addition to MS, our findings may be relevant to other CNS 

pathologies characterized by cognitive disturbances and elevated grey matter TNFα levels, 

notably Alzheimer’s disease (McAlpine and Tansey, 2008; AD). Indeed, in animal models of 

AD, TNFα signaling via TNFR1 has been implicated in learning and memory deficits (He et 

al., 2007). Other inflammatory states due to bacterial or viral infections directly affecting the 

CNS, and even peripheral inflammatory states that result in septic encephalopathy are 

accompanied by cognitive disturbances (Clark et al., 2010; Swardfager and Black, 2013). 

They could therefore present synaptic alterations similar to those recognized in AT-EAE 

mice, caused by the identified astrocytic pathway. In view of these considerations, therapeutic 

agents targeting the described signaling steps, specifically astrocytic TNFR1 and pre-

NMDAR, could be tested against cognitive disturbances in the above medical conditions. 

TNFR1 has been strongly implicated in the pathogenesis of MS (Gregory et al., 2012) and 

EAE (Kassiotis and Kollias, 2001), but not yet in the cognitive aspects. According to animal 

studies and recent clinical trials selective blockade of TNFR1 function represents a promising 

therapeutic strategy in MS (Van Hauwermeiren et al., 2011). Development of TNFR1 

antagonists with central action could offer the important additional advantage of tackling the 

cognitive component of the pathology. As for pre-NMDAR, at hippocampal synapses these 
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receptors contain the NR2B subunit (Jourdain et al., 2007). NR2B antagonists are currently 

under clinical investigation in several neurologic and psychiatric disorders (Paoletti et al., 

2013). For effective use against cognitive impairment in MS and other conditions, more 

selective “presynaptic NR2B agents” or agents acting on other subunits typical of pre-

NMDAR (Larsen et al., 2011) should, however, be developed.  

 

 

EXPERIMENTAL PROCEDURES  

 

Animal models 

tnfr1−/− mice (Rothe et al., 1993), tnfr1cneo/cneo mice (Victoratos et al., 2006) and hGFAPcreT2 

mice (Hirrlinger et al., 2006) expressing a conditional EYFP reporter in the ROSA locus 

(Srinivas et al., 2001), all on C57BL/6 background, were generated and maintained as 

described in the original studies. The latter two lines were cross-bred to generate 

hGFAPcreT2/tnfr1cneo/cneo mice. To achieve gene recombination, hGFAPcreT2/tnfr1cneo/cneo 

and tnfr1cneo/cneo mice were administered TAM (100 mg/kg) dissolved in corn oil (OIL), or 

OIL alone as a control carrier, once per day for 8 consecutive days (Hirrlinger et al., 2006). 

For AT-EAE induction, mice were injected with effector MOG35-55-specific CD4+ T cells 

generated from 2D2 mice (details in Codarri et al. (2011)). Intervals from the first TAM or 

OIL injection were: 10-12 days in electrophysiology experiments without AT-EAE induction; 

16-22 days if AT-EAE was induced; 13-16 days in behaviour experiments in AT-EAE mice; 

13 days (young mice) and 25 days (adult mice) in immunohistochemistry experiments looking 

at EYFP reporter expression; 16-22 days in the same experiments looking at inflammation 

markers.  

 

Electrophysiology experiments  
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Patch-clamp recordings were performed in acute brain horizontal slices at excitatory PP-GC 

synapses in the hippocampal DG. GCs were patched with borosilicate glass pipettes (3-5 MΩ) 

and voltage-clamped at –65 mV. All experiments were carried out at 34ºC in the presence of 

picrotoxin (100 µM), to block GABAA receptor-mediated currents. To study mEPSC activity 

in isolation, tetrodotoxin (TTX, 1 µM) was added to block action potentials. To test the effect 

of TNFα (60-600 pM), the cytokine was locally applied via an ejection pipette positioned in 

the OML by using a single 10 s pulse (4-7 psi) delivered by a PV830 Pneumatic PicoPump 

(WPI, Germany). In some experiments we indirectly verified spatial diffusion and rapid 

washout of TNFα by co-ejecting Cascade blue, a fluorescent dye, under two-photon imaging. 

Recordings in each GC started about 10 min after reaching whole-cell and covered a period 

going from 5 min before to 30 min after TNFα application. Stimulation of the PP was done 

with a theta electrode placed in the OML. Recordings were analyzed essentially as described 

in Jourdain et al. (2007) and Santello et al. (2011). 

 

Immunohistochemistry 

For immunofluorescence staining, 50-µm-thick horizontal slices were prepared from fixed 

brains by use of a cryo-microtome (Microm International AG). After permeabilization, slices 

were incubated with primary antibodies (72 h, 4°C) and then with secondary antibodies in 

0.3% triton-X 100/PBS (2h, room temperature) and with 4′,6-diamidino-2-phenylindole 

(DAPI, 300 nM) to label nuclei. Large field images in the hippocampus and neighboring 

regions were acquired using a Leica MZ16FA stereomicroscope (Leica Microsystems, 

Germany) equipped with Leica EL6000 illumination. In all other cases, images were acquired 

with a Leica SP5 AOBS confocal microscope (Leica Microsystems, Germany), using a 40x 

oil immersion “HCX PL APO” objective (NA: 1.25-0.75). Analysis was done with ImageJ 

software (NIH, USA).  
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Behavioural experiments 

Acquisition of contextual fear conditioning followed 24 h later by a test of its expression 

(sometimes repeated at 48h) were used as tests of, respectively, contextual learning and 

memory. The fear conditioning test, in some cases preceded by an open field test the day 

before, was carried out using a fear conditioning arena (context) with a grid floor which could 

be electrified, placed within an isolation chamber (Ugo Basile, Italy) controlled by Ethovision 

XT software (Noldus, Netherlands). Mice were first given a 5-min activity test (AT) without 

electroshocks to assess locomotor activity, baseline freezing and rearing. Next the 

conditioning session comprised six inescapable electroshocks (0.20 mA x 2 s each), delivered 

at 2 min intervals. After this test, mice were returned to their home cages until the following 

day, when they were placed back in the same arena in the absence of electroshocks for the 

mnemonic fear expression test. Mice were considered to be freezing if no movement was 

detected for at least 2 s and the measure was expressed as a percentage of time spent freezing.  

 

A detailed description of all experimental methods is provided in the Supplemental 

Experimental Procedures.  
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FIGURE LEGENDS 

 

Figure 1: Concentration-Dependent Effects of Exogenous TNFα on Excitatory Synaptic 

Activity in a Hippocampal Cognitive Circuit. A, left: two-photon image of the experimental 

setting for local TNFα application in the hippocampal DG (GC: green, Alexa-488; astrocytes: 

red, sulforhodamine 101; TNFα diffusion upon 10s local puff: Cascade blue with dotted white 

contour). Scale bar: 20 µm; GCL = granule cell layer; IML, MML and OML = inner, middle 

and outer molecular layer, respectively. A, right: representative traces of mEPSC activity in 

control condition (grey) and 30 min after puffing 60 pM TNFα (azure) or 600 pM TNFα 

(red); scale bars: 20 s, 20 pA. Insets: representative mEPSC events for each condition taken at 

the indicated time (triangle); scale bars: 10 ms, 5 pA. B, left: histograms of mean mEPSC 

frequency in control condition (n = 16) and 30 min after puffing 60 pM TNF (n = 5) or 600 

pM TNFα (n =11). Only the latter treatment increases mEPSC frequency vs. control (p<0.001, 

ANOVA followed by post hoc comparisons: ANOVA + phc). B, middle: representative 

cumulative probability plots comparing mEPSC inter-event intervals (IEI) in the above 

conditions. B, right: mEPSC activity monitored from 5 min before puffing TNFα (puff 

denoted by arrow) to 30 min after puffing; azure: 60 pM TNFα; red: 600 pM TNFα. Only the 

latter increases mEPSC frequency (repeated measures ANOVA + phc: at 3, 5, 15 and 30 min: 

p<0.01; at 10, 20 and 25 min: p<0.001). C: histograms (left) and cumulative probability plots 

(right) of mean mEPSC amplitude before (control) and 30 min after application of 60 pM or 

600 pM TNFα. Neither TNF concentration produced an effect (p>0.1, ANOVA). D: 

comparison of the effect of 600 pM TNFα in young (n = 11) and adult (n = 14) mice. In both 

groups TNFα maximally increased mEPSC frequency within 10 min (p<0.001; 2-way 

repeated measures ANOVA + phc) with comparable effect (p>0.08). E, left: biocytin staining 

of the recorded GC showing location of the stimulating electrode and of the puffing pipette 

containing 60 pM TNFα, accompanied by representative traces (average of 6 consecutive 
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sweeps) showing paired EPSCs before and 30 min after TNFα puff. Scale bars: 40 ms; 200 

pA. E, middle: histograms of mean EPSC amplitude and paired-pulse ratio (PPR) in control 

condition and 30 min after puffing 60 pM TNFα (n = 5; p > 0.27 and p > 0.12, respectively). 

E, right: time-course of the effect of 60 pM TNFα on mean EPSC amplitude (normalized 

value). F, left: GC biocytin staining and corresponding EPSC traces recorded before and after 

puffing 600 pM TNFα (conditions like in E, left). Scale bars: 40 ms; 200 pA. F, middle: 

histograms represent mean eEPSC amplitude and PPR in control condition and 30 min after 

puffing 600 pM TNFα. The cytokine causes substantial increase of EPSC amplitude (n = 9; p 

< 0.05) and decrease in PPR (n = 9; p < 0.01); F, right: time-course of the effect of 600 pM 

TNFα on mean EPSC amplitude (normalized value). TNFα induces progressive and 

irreversible increase in synaptic activity. Data are presented as mean ± SEM. See also Fig. S1. 

 

Figure 2: Mechanism of The Synaptic Change Induced By TNFα: Role of Ifenprodil-Sensitive 

NMDA Receptors and of TNFR1. A, B, C, left: representative traces of mEPSC frequency in a 

GC before (control) and 30 min after puffing 600 pM TNFα (different conditions in A, B and 

C specified below); right: time-course of the mean effect of TNFα (normalized value); Scale 

bars: 5 pA; 5 s. Statistics: repeated measures ANOVA + phc. A, TNFα effect in the presence 

of the NR2B-selective NMDAR antagonist ifenprodil (3 µM, blue bar). The cytokine does not 

change mEPSC frequency (n = 4, p>0.5 at all time-points after TNFα vs. before TNFα); B: 

TNFα effect when ifenprodil is applied 10 min after puffing the cytokine (ifenprodilpost). 

Ifenprodil does not reverse the mEPSC frequency increase induced by TNFα (n = 4; p<0.05: 

at 5 min post TNFα; p<0.01 at 10 and 20 min; p< 0.001: at 30 min vs. before TNFα); C: 

TNFα effect in tnfr1-/- mice. Lack of TNFR1 prevents the effect of TNFα (n = 4; p > 0.4 at all 

time-points after TNFα vs. before TNFα). Data are presented as mean ± SEM. 
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Figure 3: Characterization of hGFAPcreT2/tnfr1cneo/cneo Mice, a Model of Conditional 

TNFR1 Knock-out in Which TNFR1 Can Be Re-expressed Selectively in Astrocytes. A: 

scheme of the model: mice expressing TAM-inducible cre recombinase under the hGFAP 

promoter (hGFAPcreT2) and a conditional reporter (STOP-EYFP, grey triangles) in the 

ROSA locus are crossed with mice (tnfr1cneo/cneo) with a neomycin cassette (Neo-STOP) 

flanked by loxP sites inserted in the tnfr1 gene to conditionally inhibit its functional 

expression. B: representative immunolabeling of the hippocampal DG of a P90 

hGFAPcreT2/tnfr1cneo/cneo mouse upon TAM-induced recombination (z-stack = 12 µm; scale 

bar = 100 µm). Upper panels: left: reporter expression revealed by anti-EYFP antibodies 

(EYFP, red); middle: astrocyte staining with glutamine synthetase (GS, green); right: overlay 

showing co-localization of the reporter with astrocytes in the dentate ML and hilus. Notice 

few additional EYFP+ cells in the sub-granular zone (SGZ), representing neural stem cells 

and/or neuronal precursors. Blue: DAPI nuclear staining. Lower panels: left: reporter 

expression as above; middle: neuronal staining with NeuN (turquoise); right: overlay 

showing no co-localization of the reporter with neurons. (See also Fig. S2 for immunolabeling 

of OIL-treated hGFAPcreT2/tnfr1cneo/cneo mice). C: genomic PCR analysis of tnfr1 expression 

in FACS sorted neuronal (NeuN+) and non-neuronal (NeuN-) cell populations from the brains 

of TAM-injected hGFAPcreT2/tnfr1cneo/cneo, tnfr1cneo/cneo and wild-type mice. The lower band 

(407 bp) corresponds to the wild-type tnfr1 sequence; the upper one (Unrec, 1836 bp) to the 

presence of the neo cassette in the tnfr1 sequence (lack of tnfr1 expression); the intermediate 

band (Rec, 576 bp) to the removal of the neo cassette sequence between the 2 loxP sites upon 

recombination (tnfr1 re-expression). Note the combined appearance of a strong Rec band and 

a reduced Unrec band selectively in the NeuN- population from TAM-injected 

hGFAPcreT2/tnfr1cneo/cneo mice. See also Fig S3 and 4. The β-actin promoter amplicon 

(bottom) shows the presence of similar amounts of DNA in the reactions. On the left: 
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molecular weight marker: 100 bp DNA ladder. The gel was cut below 100bp for aesthetic 

reasons. 

 

Figure 4: Re-Expression of TNFR1 Selectively in Astrocytes Reconstitutes the Synaptic Effect 

of TNFα. A, B. C left: representative traces of mEPSC frequency in a GC before (control) and 

30 min after puffing 600 pM TNFα (different conditions in A, B and C specified below); 

right: time-course of the mean effect of TNFα (normalized value); Scale bars: 5 pA, 5 s; 

Statistics: repeated measures ANOVA + phc. A: TNFα effect in TAM-injected 

hGFAPcreT2/tnfr1cneo/cneo mice. The cytokine induces persistent increase in mEPSC 

frequency (n = 7; p<0.01 at all time-points after TNFα vs. before TNFα); B: TNFα effect in 

OIL-injected hGFAPcreT2/tnfr1cneo/cneo mice. Without TAM-induced recombination, TNFα 

does not change mEPSC frequency (n = 3; p >0.3 at all time-points after TNFα vs. before 

TNFα); C: TNFα effect in TAM-injected tnfr1cneo/cneo mice. With TAM but without cre 

activity, TNFα does not change mEPSC frequency (n = 5; p > 0.2 at all time-points after 

TNFα vs. before TNFα.  Data are presented as mean ± SEM. 

 

Figure 5: Impaired Cognitive Function, Local Inflammation and Enhanced TNFα Levels in 

the Hippocampus of AT-EAE Mice. A: contextual fear learning and memory test in AT-EAE 

mice (6-7 dpi; blue, n = 7, see also Figs. S5 and S6) vs. vehicle-injected control mice (grey, n 

= 7); left: acquisition of contextual fear conditioning. Mice were first exposed to an activity 

test (AT) and then to contextual fear conditioning (see also Fig. S6). The two groups 

displayed similar increase in % time spent freezing across intervals (Interval main effect 

p<0.001 ANOVA + phc) with AT-EAE mice showing slightly lower values; right: 

expression of fear conditioning. AT-EAE mice exhibited decreased freezing (reduced fear 

memory) compared to control mice (Group x Interval interaction p<0.001 ANOVA + phc) at 

intervals 1-3, 4-6 and 7-9 (p<0.01; 0.05 and 0.001 respectively). In control mice the level of 
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freezing at the onset of the expression test was equivalent to that at the end of acquisition. B: 

representative labeling of microglia and leukocyte markers (Iba1, red; CD11b, green) in the 

hippocampus at the border with the 3rd ventricle (3rd V) in control condition and after AT-

EAE induction; blue: DAPI nuclear staining; left: large field view (scale bar = 500 µm). 

Notice in AT-EAE mice (14 dpi) strong accumulation of CD11b-and/or Iba1-positive cells in 

the 3rd V and surrounding regions (DG and CA3), dissipating towards more distal regions 

(CA1 and CA2). Middle: enlarged views of the DG (ML, GCL) at the border with the 3rd V, 

corresponding to the dotted squares on the left. The three panels compare the situation in 

control mice and in AT-EAE mice at 8 and 14 dpi (z-stack = 45 µm; scale bar = 50 µm). An 

increasing number of infiltrating leukocytes (CD11b+) and activated microglia (Iba1+ and 

CD11b+) are seen with progression of AT-EAE pathology. Right: enlarged views (scale bar = 

5 µm) of the white frames in the middle panels highlight the state change of microglia, from 

resting in control mice (faint Iba1staining) to activated in AT-EAE mice (14 dpi; strong 

Iba1staining); C: TNFα levels in the hippocampus of control (n = 7) and AT-EAE mice (8 

dpi; n = 7; same mice as in A). Histograms show significant increase in AT-EAE mice 

compared to controls, specifically in dorsal vs. ventral hippocampus (p<0.05; ANOVA + 

phc). In controls, TNFα values in dorsal and ventral hippocampus were analogous and 

grouped together. Data are presented as mean ± SEM. 

 

Figure 6: Altered Hippocampal Excitatory Transmission in AT-EAE: Protective Effect of 

Ifenprodil. A, top: representative traces of evoked paired-pulse EPSCs in GCs from wild-type 

vehicle-treated (control, grey) and AT-EAE mice (9 dpi, blue); Scale bars: 40 ms; 200 pA. 

Stimulation was adjusted to obtain comparable initial EPSC amplitudes in the two groups. 

Short-term plasticity is altered in AT-EAE mice, leading to reduced paired-pulse facilitation. 

Histograms show mean PPR in the two conditions (control: n = 10; AT-EAE: n = 8; p < 

0.001, unpaired t-test); A, bottom: mean amplitudes of single EPSCs plotted as function of 
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the stimulus intensity. EPSCs are larger in GCs from AT-EAE mice than in GCs from control 

mice (n = 6 and 9, respectively; p<0.05, 2-way ANOVA + phc). B, top: representative traces 

of mEPSC activity in dentate GCs from control (n =16) and AT-EAE mice (12 dpi, n = 24). 

Scale bars: 20 s; 20 pA. The enlarged regions highlight an increased activity in AT-EAE 

mice. Scale bars: 2 s; 10 pA. B, bottom: histograms and representative cumulative probability 

plots of mean mEPSC frequency (left) and amplitude (right) in control mice and in AT-EAE 

mice. Both parameters are significantly enhanced in AT-EAE mice (p<0.001 and p<0.05, 

respectively, unpaired t-test). C, top: representative trace of mEPSC activity in dentate GCs 

from AT-EAE mice treated with ifenprodil in vivo (azure, n = 14). Scale bars: 20 s; 20 pA; the 

enlarged region shows that activity is lower compared to untreated AT-EAE mice and similar 

to controls. Scale bars: 2 s; 10 pA. C, bottom: histograms showing % change in mean 

mEPSC frequency (left) and amplitude (right) vs. control in AT-EAE mice treated (azure) or 

not (blue) with ifenprodil in vivo. Untreated but not ifenprodil-treated AT-EAE mice display 

higher mEPSC frequency than controls (p<0.001 and p = 0.28, respectively, ANOVA + phc). 

Concerning mEPSC amplitude, both ifenprodil-treated and untreated AT-EAE mice display 

higher amplitude than controls (p<0.05, ANOVA + phc).  Data are presented as mean ± SEM. 

 

Figure 7: Causal Role of Astrocyte TNFR1 Signaling in the Hippocampal Synaptic 

Alterations and Cognitive Impairment Induced by AT-EAE. A, left: representative traces of 

mEPSC activity in dentate GCs upon induction of AT-EAE in mice re-expressing TNFR1 

selectively in astrocytes (TAM-treated hGFAPcreT2/tnfr1cneo/cneo, dark red; n = 21) and in 

their direct controls (OIL-treated hGFAPcreT2/tnfr1cneo/cneo, grey; n = 11). Scale bars: 20 s; 20 

pA. The enlarged regions highlight higher mEPSC activity in TAM-treated mice compared to 

OIL-treated ones. Scale bars: 2 s; 10 pA. A, middle: histograms showing that mean mEPSC 

frequency is significantly higher in TAM-treated vs. OIL-treated hGFAPcreT2/tnfr1cneo/cneo 
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AT-EAE mice (p<0.05, unpaired t-test). A, right: representative cumulative probability plots 

comparing mEPSC IEI in the two above groups. B: Histograms showing comparative changes 

in mEPSC frequency in GCs induced by AT-EAE in several groups of mice with respect to 

wild-type controls. AT-EAE groups are: wild-type mice (blue, n = 16), TAM- (dark red, n = 

21) and OIL-treated (grey, n = 11) hGFAPcreT2/tnfr1cneo/cneo mice; TAM- (gold, n = 15) and 

OIL-treated (green, n = 19) tnfr1cneo/cneo mice. AT-EAE causes mEPSC frequency increase 

only in wild-type and TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice (p < 0.001 and p <0.05 vs 

wild-type controls, respectively; ANOVA + phc). The latter two groups are not statistically 

different (p = 0.095, ANOVA). C: representative labeling of microglia and leukocyte markers 

(Iba1, red; CD11b, green) in the hippocampal DG of TAM- or OIL-treated 

hGFAPcreT2/tnfr1cneo/cneo (top) and tnfr1cneo/cneo (bottom) AT-EAE mice. The pattern of local 

leukocyte infiltration and microglia activation is similar in the 4 groups of mice and resembles 

the one observed in wild-type AT-EAE mice (see Fig. 5B); z-stack = 20 µm; scale bar: 50 

µm. D: contextual fear learning and memory test in TAM-treated hGFAPcreT2/tnfr1cneo/cneo 

(dark red, n = 21), OIL-treated hGFAPcreT2/tnfr1cneo/cneo (grey, n = 12) and TAM-treated 

tnfr1cneo/cneo mice (gold, n = 11) developing AT-EAE (6-8 dpi). D, left: mice were first 

exposed to an activity test (AT) and then to contextual fear conditioning (see also open field 

data, Fig. S7). For acquisition of fear conditioning, all groups displayed increased % time 

spent freezing (Interval main effect p<0. 001, ANOVA + phc). However, TAM-treated 

hGFAPcreT2/tnfr1cneo/cneo mice acquired less fear conditioning than did their OIL-injected 

counterparts and TAM-treated tnfr1cneo/cneo mice (Group x Interval interaction p<0.003 

ANOVA + phc), whereas the latter two groups were not different; D, middle: fear expression 

test 24h later: there was no difference among the three groups although TAM-treated 

hGFAPcreT2/tnfr1cneo/cneo mice showed a trend to reduced freezing (Group main effect p=0.06 

ANOVA). D, right: repetition of the fear expression test the next day (48h after 
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conditioning). TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice showed a further decrease in 

freezing and exhibited decreased freezing compared to the other two groups (Group main 

effect p<0.002 ANOVA + phc), whereas OIL-treated hGFAPcreT2/tnfr1cneo/cneo mice and 

TAM-treated tnfr1cneo/cneo mice exhibited similar % time freezing. Asterisks are color-coded 

and refer to comparison with TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice. Data are presented 

as mean ± SEM. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES  

 

Reagents 

Recombinant TNFα and TNFα flow cytometry kit were from R&D System Europe Ltd (Oxon, 

UK); picrotoxin and ifenprodil from Lucerna-Chem AG; tetrodotoxin from Alomone Labs, Israel; 

cascade blue, sulforhodamine 101, Alexa Fluor 488, the secondary antibodies Alexa Fluor 555 

(rabbit), Alexa Fluor 488 (chicken and rat) and Alexa Fluor 633 (mouse and rabbit) as well as 

DAPI and ProLong Antifade reagent were from Life Technologies Europe; the primary antibody 

polyclonal GFP (chicken), which also recognizes EYFP, was from Aves Labs Inc., Oregon, USA 

(GFP-1010, lot: 0511FP12); polyclonal glutamine synthetase (rabbit) from Abcam, Cambridge, 

UK (ab73593, lot: GR42622-1); monoclonal NeuN (mouse) from Merck SA, Switzerland 

(MAB377, lot: 1991263); polyclonal Iba-1 (rabbit) from Wako Chemicals Inc., USA (019-19741, 

lot: STH6984); monoclonal CD11b (rat) from eBioscience, Inc., San Diego, CA, USA (14-0112, 

lot: E03532-1630);  DMEM and Foetal Bovine Serum were from PAA Laboratories GmbH; papain 

from Acros Organics, Basel, Switzerland; DNase I from ProSpec, Israel; the genomic DNA 

purification kit PROMEGA WIZARD AG and the iTaq™ Universal SybrGreen were from Bio-

Rad Laboratories AG. All the other chemicals were from Sigma-Aldrich. 

 

 

Animal models 

In our studies we utilized C57BL/6 (wild-type) mice as well as several transgenic lines, some of 

which were generated within the present study, and all of which were on a C57BL/6 background. 

tnfr1cneo/cneo mice (Victoratos et al., 2006) and hGFAPcreT2 mice (Hirrlinger et al., 2006) were 

cross-bred in order to generate hGFAPcreT2/tnfr1cneo/cneo mice. All mice were kept in the animal 

facility according to Swiss guidelines for the welfare of experimental animals. tnfr1−/− mice were 

Supplemental experimental procedure and references
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housed under specific pathogen-free conditions together with age- and sex-matched wild-type 

mice. Transgenic lines were screened by PCR analysis for the presence of the transgenes in 

genomic DNA purified from digital biopsies (5-11 days after birth). The primers used were: for 

hGFAPcreT2: 500 bp, cre-sense 5′- CAG GTT GGA GAG GAG ACG CAT CA-3′ and cre-

antisense 5′- CGT TGC ATC GAC CGG TAA TGC AGG C-3′; for tnfr1cneo/cneo: sense 5-TGG 

TGG CCT TAA ACC GAT CC-3', antisense: 5'-AGA GAG GTT GCT CAG TGT GAG GC-3', 

antisense: 5'-ATG ATT GAA CAA GAT GGA TTG CAC-3'; for ROSA-EYFP: sense 5'-AAA GTC 

GCT CTG AGT TGT TAT-3', antisense 5'-GCG AAG AGT TTG TCC TCA ACC-3', antisense 5'-

GGA GCG GGA GAA ATG GAT ATG-3', for tnfr1-/-: sense: 5′- GGG GCC TGA GAC CTA 

ATT GC-3′, antisense 5'-CAG TGA CCC CTG ATG GAT GTA TCC-3′ and antisense 5'-CTT 

CCA TTT GTC ACG TCC TGC -3′. To achieve gene recombination in living 

hGFAPcreT2/tnfr1cneo/cneo and tnfr1cneo/cneo mice the animals were administered TAM dissolved in 

corn oil (OIL), to a final concentration of 10 mg/ml. Young (P17-25) or adult (P60-90) mice from 

the same litter were weighted every day and received intra-peritoneal TAM injections (100 mg/kg, 

one injection/day for 8 consecutive days (Hirrlinger et al., 2006). Some animals received the same 

injection protocol but with OIL as control carrier. Different intervals from the first TAM/OIL 

injection were observed in different types of experiment (see main text). Recombination efficacy 

and specificity were evaluated by genomic PCR analysis (see below) and by EYFP reporter 

expression (Srinivas et al., 2001) (revealed by GFP immunolabeling, see below). All in vivo and 

ex vivo procedures were conducted under license and according to regulations of the Cantonal 

Veterinary Offices of Vaud and Zurich (Switzerland). 

 

 

Adoptive-Transfer Experimental Autoimmune Encephalomyelitis (AT-EAE) 
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The EAE pathology was induced by adoptively transferring via injection effector MOG35–55-

specific CD4+ T cells generated from 2D2 mice essentially as described in (Codarri et al. (2011) 

into P60-90 C57BL/6 (wild-type), tnfr1cneo/cneo or hGFAPcreT2/tnfr1cneo/cneo mice. The latter two 

lines from the same litter were treated just before the induction with either TAM or OIL as 

described above. The adoptive transfer approach was used because the study of EAE was in 

immune-compromised animals lacking TNFR1 expression in all or most cell types. In order to get 

around the missing contribution of TNFR1 signaling to the priming phase, that phase was omitted 

by transferring primed wild-type T cells into the experimental animals. As control, some animals 

received the same injection protocol but with HBBS buffer only (sham-injected animals). In the 

days after the encephalitogenic challenge (days post-injection or dpi), mice were monitored, 

weighed daily, and scored for motor disease severity on a scale of 0 to 5. The score was designated 

as follows: 0, no detectable signs of EAE; 1, paralysis of the tail; 2, definite tail and partial hind 

limb paralysis; 3, complete paralysis of the hind limbs; 4, total paralysis of hind and forelimbs 

(mice at grade 4 were euthanized); 5, moribund or death.   

 

 

Electrophysiology experiments and analysis 

All experiments were executed using C57BL/6 (wild-type) mice or mice from the several 

transgenic lines detailed above. Depending on the experiment, either young (P17-25) or adult (P60-

90) animals were utilized. Some experiments were performed in mice developing AT-EAE, 

between 8 and 14 dpi. In order to study synaptic function in a cognition-relevant circuit, patch-

clamp recordings were performed in acute brain slices maintaining the intact connectivity between 

entorhinal cortex and hippocampal dentate gyrus. For preparing the acute slices, mice were 

anesthetized (isoflurane, 1 min) and decapitated. The brain was quickly removed and placed, for 



4 
 

young mice, in ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM) 125 NaCl, 2 KCl, 

2 MgCl2, 2 CaCl2, 25 NaHCO3, 1.2 NaH2PO4 and 10 glucose, and for adult mice, in ice-cold 

sucrose solution containing (in mM) 62.5 NaCl, 105 sucrose, 2 KCl, 7 MgCl2, 0.5 CaCl2, 25 

NaHCO3, 1.2 NaH2PO4 and 10 glucose, both at pH 7.4, 295-300 mOsm, saturated with 95% O2 

and 5% CO2. The brain was then cut (Thermo Scientific Microm International, AG) in horizontal 

hemibrain slices (350-400 μm-thick) which were allowed to recover in ACSF at 34 °C for at least 

45 min before electrophysiological recording. Slices were then transferred individually into a 

recording chamber where they were submerged and continuously perfused (2 ml/min) with ACSF. 

All experiments were carried out at 34ºC in the presence of picrotoxin (100 µM), to block GABAA 

receptor-mediated inhibitory currents. To study miniature excitatory post-synaptic current 

(mEPSC) activity in isolation, tetrodotoxin (TTX, 1 µM) was added to the extracellular solution to 

block action potentials. Recordings were performed at excitatory synapses between perforant path 

afferents and granule cells (GCs) in the hippocampal dentate gyrus. The latter were patched with 

borosilicate glass pipettes (3-5 MΩ) containing (in mM): 110 cesium gluconate, 8 NaCl, 0.2 EGTA, 

10 HEPES, 17 CsCl2, 0.3 Na3GTP and 2 Na2ATP, buffered to pH 7.2–7.4 with CsOH (osmolarity: 

290 mOsm). mEPSC recordings were performed with a multiclamp 700B amplifier (DIPSI 

Industry, France) and acquisitions with pClamp 10.2 (Axon Instruments, Union City, CA), whereas 

eEPSC recordings were performed using Dagan BVC-700A amplifier (Dagan) and data were 

acquired with an ITC-16 board (Instrutech) and using Igor software (Wavemetrics). GCs were 

voltage clamped at –65 mV after reaching whole cell configuration and at least 10 minutes were 

waited before the beginning of the recording for cell dialysis. Recordings with unstable baseline 

greater than –200 pA were rejected. TNFα (1 ng/ml (60 pM), or 10 ng/ml (600 pM)) was pressure 

applied in the dentate molecular layer by using a single 10s pulse. In some experiments the NR2B-

selective NMDA receptor antagonist ifenprodil (3 µM) was present. The drug was bath applied 
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either before or 10 min after TNFα application. To examine the effects of long-term exposure to 

TNFα, some slices were incubated at room temperature with ACSF containing 60 or 600 pM TNFα 

for a minimum of 1 hr and a maximum of 2.5 hrs before the experiments started. 

In a set of experiments in AT-EAE mice, ifenprodil was administered in vivo during induction of 

the pathology by daily i.p. injection at 40 mg/kg from 5 dpi to the day of the electrophysiological 

experiment (11-14 dpi). The last injection was performed ≥ 2 h before starting the slicing 

procedure. Recordings were analyzed as described in Jourdain et al. (2007) and Santello et al. 

(2011). Transient miniature current events (sampling frequency, 50 kHz) were low-pass filtered (2 

kHz) and analyzed in 60 s bins using the Mini-Analysis Program 6.1 (Synaptosoft Inc., USA). In 

TNFα application experiments, bins were analyzed 5, 2 and 1 minutes before application of the 

cytokine and 3, 5, 10, 20, and 30 minutes after its application. In some experiments also the 15 and 

25 min time points were analyzed. In experiments in which data were expressed as relative 

frequency, the 3 values of the time points before TNFα application were averaged and considered 

as the control value. In experiments performed on AT-EAE mice, bins were analyzed ≥10 min after 

reaching the whole-cell patch-clamp configuration. The selection template chosen to detect each 

current event consisted of a 5-ms baseline, complete rise time and 90% of decay time. At least 30 

events were averaged for any condition in any experiment. Events were identified as miniature 

excitatory synaptic currents (mEPSC) by setting the event detection threshold at 3-fold the baseline 

noise level and by checking that events had (i) rise times faster than decay times, (ii) rise times 

greater than 0.4 ms, and (iii) decay times greater than 1.5 ms. Events not fitting the above 

parameters were rejected. Event amplitudes, frequencies, rise and decay times were first averaged 

within each experiment and regrouped by condition. The resulting means were averaged between 

experiments. Recordings were analyzed with Clampfit 10.2 (Axon Instruments, Union City, CA). 

For all graphs Origin 8.1 (OriginLab Corporation, Northampton, MA) was used. eEPSCs were 
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evoked by placing a theta patch pipette located in the outer molecular layer 50-100 µM lateral from 

the recorded GC. Synapses were stimulated every 20 s with a 20-Hz paired-pulse. Stimulation 

intensity was adjusted in order to obtain current amplitude of 100-200 pA and a stable baseline for 

at least 5 min. Recordings with leak increasing more than 100 pA, access resistance changing more 

than 20% or EPSC amplitude rundown more than 10% between the beginning and the end of the 

baseline period were discarded. Six consecutive sweeps immediately before TNFα puff and at the 

end of the time-course were averaged to evaluate changes in EPSC amplitude and paired-pulse 

ratio (PPR). For experiments on AT-EAE mice, a single EPSC was evoked every 10 s at increasing 

stimulation intensities whereas 5 paired-pulses (every 20 s) were recorded at adjusted stimulation 

intensity and averaged between them to obtain the PPR. Whenever possible, neurons directly facing 

the 3rd ventricle were recorded. Some cells were filled with 0.2% biocytin to reveal their 

morphology detail and PFA-fixed slices were developed with the avidin-biotin-peroxidase method 

(Egger et al., 2008).      

 

 

Two-Photon imaging  

Two-photon imaging was performed with an Ultima two-photon laser scanning microscope 

(Brucker Nano Surfaces Division, Madison, WI, USA), consisting of an Olympus BX61WI with a 

Bruker galvanometer scanning system and a 60× water immersion objective lens (numerical 

aperture: 0.9; Olympus Optical LUMPlan FI/IR). To reveal astrocytes, these cells were live stained 

with the red dye sulforhodamine 101 (0.1 µM; 15 min, 37°C), whereas the fine morphology of 

patched GCs was revealed by adding the green dye Alexa 488 (200 μM) to the intracellular patch 

solution and by letting the dye diffuse into the cell (30 min) after reaching the whole-cell 

configuration. Application of TNFα-containing solution (see above) was monitored with the dye 
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Cascade blue (500 μM) added to the solution. Simultaneous acquisition (wavelength: 820 nm; 

frame rate: 0.5 Hz; dwell time: 0.8 μs; resolution: 1024x1024) of red, green and blue fluorescence 

and of high-contrast transmitted-light (via Dodt contrast) before, during and after the TNFα pulse 

was used to establish the position of the ejection pipette relative to the recorded GC and 

neighboring astrocytes, and to monitor the spatial domain of diffusion and the subsequent rapid 

washout of the TNFα-containing solution following pulse application.   

 

 

Immunohistochemistry and image analysis 

Immunohistochemistry (IHC) experiments were performed in slice preparations from: (a) 

hGFAPcreT2/tnfr1cneo/cneo mice injected with either TAM or OIL to evaluate cell-specific 

reconstitution of gene expression; and (b) C57BL/6 (wild-type) mice and different transgenic lines 

(tnfr1cneo/cneo, hGFAPcreT2/tnfr1cneo/cneo mice injected with either TAM or OIL) to evaluate 

progression of local inflammation upon AT-EAE induction. Image analysis was performed in the 

hippocampal dentate gyrus. In the local inflammation experiments the whole hippocampal 

formation and the other regions surrounding the 3rd ventricle were considered. In all cases, mice 

were anesthetized with isoflurane and decapitated. Brains were fixed overnight (4% 

paraformaldehyde in PBS) at 4°C, washed 4 times in PBS and incubated for 1.5 days in 30% fresh 

sucrose in PBS at 4° C. 50 µm-thick horizontal brain slices were cut with a cryo-microtome 

(Microm International AG) and stored at -20° C in a solution containing ethylene glycol (30%) and 

glycerol (30%) in 0.05 M phosphate buffer (PB, pH 7.4) until further processing. For IHC, slices 

rinsed in PBS (3 x 10 min), were permeabilized with 0.3% Triton-X 100 (10 min), incubated with 

blocking solution (0.3% Triton-X 100, 2% horse serum in PBS, 2 h) and with primary antibodies 

on a horizontal shaker (72 h, 4°C), then washed in PBS (3 x 10 min) and incubated with secondary 
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antibodies in 0.3% triton-X 100/PBS at room temperature for 2 h. Next, slices were washed (2 x 

10 min) in 0.1 M PB (pH 7.4) and incubated with 4′,6-diamidino-2-phenylindole (DAPI, 300 nM) 

to label nuclei, washed again in 0.1 M PB (pH 7.4) and mounted on glass slides using ProLong 

Gold Antifade reagent for analysis with confocal microscopy. In experiments looking at gene re-

expression, slices were incubated with anti-GFP (1:1000), which also recognizes EYFP, anti-

glutamine synthetase (1:500) or anti-NeuN (1:500) antibodies revealed with anti-chicken Alexa 

Fluor 488 (1:400), anti-rabbit Alexa Fluor 633 (1:400) and anti-mouse Alexa Fluor 633 (1:400), 

respectively. In experiments looking at progression of local inflammation, slices were incubated 

with anti Iba-1 (1:400) and anti-CD11b (1:250) antibodies revealed with anti-rabbit Alexa Fluor 

555 (1:400) and anti-rat Alexa Fluor 488 (1:400), respectively. A Leica MZ16FA stereomicroscope 

(Leica Microsystems, Germany) equipped with Leica EL6000 illumination was used for large filed 

images whereas a Leica SP5 AOBS confocal microscope (Leica Microsystems, Germany) and 

using a 40x oil immersion objective (NA: 1.25-0.75) was used in all other cases. For each 

fluorophore, acquisition consisted of a z-stack (12-45 µm; step size: 0.3-1 µm, frame average: 2, 

scan speed: 400 Hz, pinhole size: 1 Airy unit; resolution: 1024 x 1024 or 512 x 512 pixels). Laser 

excitation wavelength was set at: 405 nm with a diode through an acousto-optic beam splitter for 

DAPI; 488 nm with Argon laser for Alexa Fluor 488; 543 nm and 633 nm with a He/Ne laser for 

Alexa Fluor 555 and Alexa Fluor 633, respectively. Images were visualized with Imaris software 

(Bitplane AG, Zurich, Switzerland), transformed into tiff grayscale images for each channel and 

analyzed with ImageJ software (NIH, USA). To assess recombination efficacy, cells expressing 

the reporter gene (EYFP-positive cells) were counted in the whole dentate gyrus region with “easy 

3D function” and expressed as % of GS-positive cells or NeuN-positive cells. In all cases, 3 slices 

from 4 animals/group were analyzed. Images in the figures are maximal intensity projections with 

median filter and contrast adjusted for display purposes.  
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Flow cytometric sorting and genomic PCR analysis of brain cell populations 

The protocol used for purification of different brain cell populations was essentially as described 

in Lioy et al. (2011). Briefly, whole brains from adult C57BL/6 (wild-type) , tnfr1cneo/cneo or TAM-

injected hGFAPcreT2/tnfr1cneo/cneo mice were cut quickly into small pieces in cold dissociation 

medium and incubated (45 min, 37°C) in the same medium containing 40 U/ml papain. The 

resulting tissue was washed, mechanically triturated in DMEM containing 0.5 mg/ml DNase-I and 

10% fetal bovine serum (FBS) and consecutively filtered with 100 μm and 40 μm strainers to 

separate intact cells from cell debris or aggregates. After centrifugation (10 min, 1000 rpm 4ºC), 

cells were fixed with 1% formaldehyde (15 min, 25ºC), washed twice in DPBS then permeabilized 

in PBS containing 0.2% TritonX-100 and 10% FBS (30 min, 25ºC). Cells were labeled using anti-

mouse NeuN antibody (1:200) followed by anti-mouse Alexa Fluor 488 (1:300, 1h at room 

temperature); nuclei were labeled with DAPI (300 nM). The different cell populations were 

discriminated by flow cytometric sorting (BD FACS Aria I, BD Biosciences, Switzerland, Europe) 

analysis (Guez-Barber et al., 2012). DAPI-labelled cells were separated in neuronal (NeuN+) and 

non-neuronal (NeuN-) cells according to positive or negative NeuN labeling. Sorting parameters 

were adjusted to achieve the optimal purity for each group. Validations of the sorting parameters 

and of the sample purity were done by reanalyzing the sorted cells. Data were analyzed with FlowJo 

software (Tree Star, Ashland, OR, USA). After sorting, DNA was quickly extracted from NeuN+ 

and NeuN- cell populations using a genomic DNA purification kit. PCR and semi-quantitative PCR 

experiments were done using iTaq™ Universal SybrGreen® and the following tnfr1 primer 

sequences: sense: 5’-GG TGG CCT TAA ACC GAT CC-3’; antisense: 5’-AGA GAG GTT GCT 

CAG TGT GAG GC-3’. Quantification of the different bands was made with ImageJ software by 



10 
 

manually drawing a region of interest (ROI) corresponding to the area of the smallest defined band 

and quantifying the fluorescence intensity within the ROI after background subtraction. β-actin 

was used as a control of the quantity of DNA loaded for the different cell populations. The 

following primers were used: sense 5’- CCC AAC ACA CCT AGC AAA TTA GAA CCA C-3’ 

and antisense 5’-CCT GGA TTG AAT GGA CAG AGA GTC ACT-3’. 

 

 

Behavioural experiments 

Behavioural testing for acquisition of contextual fear conditioning in adult C57BL/6 (wild-type) 

mice developing AT-EAE (6 and 7 dpi) and sham-injected controls was conducted using a Multi 

Conditioning System (TSE Systems GmbH, Bad-Homburg, Germany), details of which are given 

in Pryce et al. (2012). Behavioural testing in adult hGFAPcreT2/tnfr1cneo/cneo mice, their 

tnfr1cneo/cneo littermates (TAM- or OIL-treated as indicated in the figures), and also wild-type mice, 

developing AT-EAE (6-8 dpi, max. 16 days after the first TAM injection), was carried out using a 

fear conditioning arena placed within an isolation chamber (Ugo Basile, Italy) controlled by 

Ethovision XT software (Noldus, Netherlands). In all experiments, mice were placed in an arena 

(context) with a grid floor which could be electrified. A first 5-min activity test (AT) in the absence 

of electro-shocks was followed by the conditioning session, comprising six inescapable electro-

shocks each of 0.20 mA x 2 s, delivered at intervals of 2 min. On the following day (24 h test) and 

in some experiments also the next day (48 h test), mice were placed back in the same arena in the 

absence of electro-shocks for the mnemonic fear expression test comprising 21 min divided into 1 

min intervals. The main measure in each test was the % time spent freezing per interval, with 

freezing defined as an episode during which no movement was detected for at least 2 s.  For 

conditioning, mean % time freezing was calculated for each pair of consecutive intervals between 
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electro-shocks (1-2, 3-4, 5-6); for the expression test mean % time freezing was calculated for each 

trio of consecutive intervals (1-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21). In addition, the measure 

of distance moved during the electroshock delivery was utilized as an indicator of pain sensitivity, 

i.e. distance moved is assumed to be proportional to pain sensitivity.  

In the transgenic mice, an open-field test was conducted on animals developing AT-EAE (5 dpi) 

the day before investigation of the same animals in contextual fear conditioning (see above). The 

open-field test was then repeated at 9dpi, after the last fear expression test. The square open-field 

arena was 45 x 45 x 40 (H) cm and made of grey plastic. Illumination was set at 70-80 lux. Mice 

were gently placed in the middle of the open field and allowed to freely explore the arena for 20 

min. The mice were continuously recorded using a video camera placed above the arena and the 

images were analyzed using Ethovision XT software (Noldus, Netherland). Mean speed, total 

distance travelled and time spent immobile were measured to assess locomotor activity and 

exploration. The time spent in a virtual inner zone (15 x 15 cm area in the middle of the arena) was 

measured as an inverse index of anxiety. All behavioural apparatus was carefully washed with 70% 

ethanol solution in between tests. 

 

 

Measure of TNFα tissue concentration 

Brains from C57BL/6J AT-EAE and sham-injected control mice previously subjected to 

behavioural testing (see above) were rapidly extracted and frozen at -80°C. For each brain, 1000 

µm coronal sections were prepared at -18 °C using a brain matrix (Azzinnari et al., 2014). Each 

section containing the hippocampus was then micropunched (punch size: 0.5 or 1 mm depending 

on the section) to obtain tissue samples containing specifically either the dorsal or the ventral part 

of the hippocampus. Samples were individually weighted, dissolved in ice-cold complete Tris lysis 
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buffer (Meso Scale Discovery, Rockville, MD, USA) and homogenized using an ultrasonicator. 

After centrifugation (14.000 rpm, 10 min), the supernatants were collected. 10 µl of each 

supernatant were used for total protein quantification (Coomassie Plus (Bradford) Assay Kit, 

Thermo Fisher Scientific Inc., Waltham, MA, USA); the remaining 90 µl were used for 

determination of the TNFα concentration using a multiplexed particle-based flow cytometric 

cytokine assay (Azzinnari et al., 2014; Vignali, 2000). Each sample was measured in duplicate and 

the mean was normalized to the protein content of the sample and expressed as pg/µg protein.  

 

 

Statistical analysis  

Unpaired t-tests were used when comparing the means of two independent experimental 

populations. In cases where the populations were not independent, e.g. when synaptic activity was 

compared at two time points before and after TNFα application, paired t-tests were used. ANOVA 

was used when comparing the means of more than two populations. Repeated measures ANOVA 

with or without independent treatment groups was performed on time-course experiments, e.g. 

synaptic activity at different time points before and after TNFα application, or AT-EAE vs. control 

mice in fear-freezing behaviour. In cases where ANOVA tests yielded significant effects, 

appropriate post hoc comparisons were used to identify significant pairwise differences. Two-way 

ANOVA was used to compare stimulus-EPSC amplitude profile between control and AT-EAE 

groups. For statistical analyses jmp10, GraphPad Prism 6 (GraphPad software, USA) and Excel 

were used. Values are expressed as mean ± s.e.m. unless otherwise specified. Data were considered 

as significantly different when the p value was less than 0.05. p values less than 0.05, 0.01 and 

0.001 were indicated with (*), (**) and (***) respectively. 
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Figure S1 (related to Figure 1): Rapid Application of Exogenous TNFα (60 or 600 pM) 

Does Not Affect mEPSC Amplitude and Kinetics in a Hippocampal Cognitive Circuit, 

Whereas Prolonged Incubation of the Cytokine (600 pM) Affects Both mEPSC Frequency and 

Amplitude. 

A: Time-course of mean values of mEPSC amplitude (left), rise time (middle) and decay 

time (right) in the period going from 5 min before application of TNFα (60 pM: blue; 600 

pM: red) up to 30 min after application of the cytokine. No difference was observed in any of 

the three parameters at any time, before or after TNFα application, with the low or the high 

cytokine concentration (amplitude: p>0.2; rise time: p>0.2; decay time: p>0.06 for all time 

points, repeated measures ANOVA). B: histograms of mean mEPSC frequency, amplitude, 

rise time and decay time (from left to right) after 1-2.5 h incubation of 600 pM TNFα (n=13) 

compared to control condition (n=16). Note that, with this protocol, not only mEPSC 

frequency (p<0.001, unpaired t-test) but also mEPSC amplitude (p<0.05, unpaired t-test) was 

significantly increased by TNFα above the value in control condition. In contrast, no effect 

was observed on rise time (p>0.09, unpaired t-test) or decay time (p>0.19, unpaired t-test), 

like upon short puff of the cytokine. Data are presented as mean ± SEM. 

 
 
 

  

Supplemental figure legends



Figure S2 (related to Figure 3): Lack of Reporter Expression in OIL-treated 

hGFAPcreT2/tnfr1cneo/cneo Mice. Representative immunolabeling of the hippocampal dentate 

gyrus of a 90-days old hGFAPcreT2/tnfr1cneo/cneo mouse injected with OIL (z-stack = 12 µm; 

scale bar = 100 µm). Upper panels: dual labeling with anti-EYFP antibodies (left, EYFP) 

and the astrocyte specific marker glutamine synthetase (right, GS, green) shows no reporter 

expression in astrocytes, indicative of lack of recombination in these cells. Lower panels: 

dual labeling with EYFP and the neuronal specific marker NeuN (turquoise) excludes reporter 

expression also in neurons. Blue corresponds to DAPI nuclear staining.  

 

 
 
 

  



Figure S3 (related to Figure 3): Separation of Neurons and Non-neuronal Cells From the 

Brains of Different Mouse Groups Via Flow Cytometric Sorting. Flow cytometric analysis 

was performed on cells enzymatically dissociated from adult mouse brains and fluorescently 

labeled with DAPI and Alexa Fluor 488 directed against the neuronal marker NeuN (Alexa 

Fluor 488-A, see Methods). The following mouse groups were analyzed: A: wild-type (n = 12 

mice); B: TAM-treated hGFAPcreT2/tnfr1cneo/cneo (n = 8); C: tnfr1cneo/cneo (n = 7). For each 

mouse group, cells were separated in neuronal and non-neuronal populations according to the 

presence (NeuN+, purple) or absence (NeuN-, orange) of Alexa Fluor 488-A fluorescence. In 

order to distinguish single cells from cell clusters, singlet gating based on a DAPI-A vs DAPI-

W scatter plot was done (Guez-Barber et al., 2012). NeuN+ and NeuN- singlets were then 

sorted. Singlets presented the following % of fluorescent events/population: for wild-type 

mice: NeuN+: 88.7; NeuN-: 89.2; for TAM-treated hGFAPcreT2/tnfr1cneo/cneo mice: NeuN+: 

86.2; NeuN-: 46.1; for tnfr1cneo/cneo mice: NeuN+: 74.6; NeuN-: 64.9. Right panels: graphs 

showing the sorted NeuN+ and NeuN- singlet populations. Horizontal bars indicate the 

proportion of cells in each sorted population that were subsequently used for genomic PCR 

analysis (Fig. 3c), namely:  40.7% of NeuN+ and 84.9% of NeuN- cells from wild-type mice;  

57.4% of NeuN+ and 68.6% of NeuN- cells from TAM-treated hGFAPcreT2/tnfr1cneo/cneo 

mice; 65.2% of NeuN+ and 94.6% of NeuN- cells for tnfr1cneo/cneo mice. Note that, although we 

selected the above proportions restrictively, we cannot exclude small contaminations.  

 

 

  



Figure S4 (related to Figure 3): Semi-quantitative Genomic PCR Analysis of tnfr1 

Expression in NeuN+ and NeuN- Cell Populations From the Brains of TAM-treated 

hGFAPcreT2/tnfr1cneo/cneo Mice. Left, top: PCR gel pictures corresponding to the bands of 

unrecombined (Unrec, grey) and recombined (Rec, dark red) DNA after 24, 25, 26 and 27 

PCR cycles in the NeuN+ cell population. The Rec band reflects the amount of tnfr1 specific 

re-expression. Left, bottom: bar-graph reporting the intensity of each band after each given 

number of PCR cycles. While the intensity of the Unrec band increases with the PCR cycles, 

no Rec band was detected in this population even after 27 cycles. Middle, top and bottom: 

same experiment as above but performed using the NeuN- cell population. Note in this case 

that the Rec band is present already after 24 PCR cycles and that the Unrec band reaches 

plateau already after 26 cycles. Right: same experiment as above but performed using β-actin 

primers to test the relative amplification of  β-actin in the NeuN+ (purple) and NeuN- (orange) 

cell populations as control. As expected, similar DNA copy numbers are observed in the two 

populations. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Figure S5 (related to Figure 5): Course of AT-EAE Development And Underlying Motor 

Dysfunction in Wild-type Mice. The graph gives the incidence of AT-EAE (blue) and 

underlying daily mean motor disease severity scores (red) (n = 16 mice in 3 experimental 

series). Daily assessments were made during the first 15 days following adoptive transfer of 

2D2 transgenic CD4 T cells primed in vivo and re-stimulated in vitro. Motor disease severity 

was scored from 0 to 5 (see Methods). Data are presented as mean ± SEM. 

 
 

  



Figure S6 (related to Figure 5): Measures of Locomotor Activity, Anxiety, Exploratory 

Activity and Pain Sensitivity Show No Difference Between AT-EAE Mice and Controls. 

Histograms of the different behaviors measured in wild-type mice developing AT-EAE at 6 

dpi (AT-EAE, blue bars, n = 7) and in their sham-treated controls (Control, grey bars, n = 7). 

Measures were taken during a 5-min activity test preceding the fear conditioning test or 

during the fear conditioning test itself. From left to right, total distance travelled (index of 

locomotor activity), percentage of time spent freezing (index of anxiety) and total incidence 

of rearing (index of exploratory activity) were assessed during the activity test. No significant 

difference was observed between AT-EAE and control mice (p > 0.56, unpaired t-test). Mean 

total distance moved during the 6 x 2-sec electroshocks in the fear conditioning test was 

measured as an index of pain sensitivity, no significant difference was observed (p = 0.83, 

unpaired t-test). Data are presented as mean ± SEM. 

 

  



Figure S7 (related to Fig. 7): Measures of Locomotor Activity, Anxiety, Exploratory Activity 

and Pain Sensitivity Show No Difference Between Three Groups of AT-EAE Mice: TAM-

Treated And OIL-treated hGFAPcreT2/tnfr1cneo/cneo Mice And TAM-treated tnfr1cneo/cneo Mice. 

A: example traces of locomotor activity in OIL (grey, n = 12), TAM-treated (dark red, n = 21) 

hGFAPcreT2/tnfr1cneo/cneo mice, and in TAM-treated tnfr1cneo/cneo mice (gold, n = 11) placed in 

an open field for 20 min at 5 dpi of AT-EAE. Scale bar: 5 cm. B: histograms of the total 

distance travelled (index of locomotor activity), speed (index of locomotor activity), time 

spent immobile (index of inactivity) and time spent in the inner zone (inverse index of 

anxiety) by the mice during the open field test show no significant differences between the 3 

groups (p > 0.58 ANOVA). C, left: histograms of total number of rearings during the 5 min 

activity test (index of exploratory activity). C, right: mean of the total distance moved during 

the 6 x 2-sec electro-shocks in the fear conditioning test (index of pain sensitivity). No 

difference was found between the 3 mouse groups for the 2 above parameters (p> 0.26 

ANOVA). Data are presented as mean ± SEM. 
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