PascalX: a Python library for GWAS gene and pathway enrichment tests.

Détails

Ressource 1Télécharger: 37137228_BIB_D8824EBDC2F5.pdf (186.36 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_D8824EBDC2F5
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
PascalX: a Python library for GWAS gene and pathway enrichment tests.
Périodique
Bioinformatics
Auteur⸱e⸱s
Krefl D., Brandulas Cammarata A., Bergmann S.
ISSN
1367-4811 (Electronic)
ISSN-L
1367-4803
Statut éditorial
Publié
Date de publication
04/05/2023
Peer-reviewed
Oui
Volume
39
Numéro
5
Pages
btad296
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
'PascalX' is a Python library providing fast and accurate tools for mapping SNP-wise GWAS summary statistics. Specifically, it allows for scoring genes and annotated gene sets for enrichment signals based on data from, both, single GWAS and pairs of GWAS. The gene scores take into account the correlation pattern between SNPs. They are based on the cumulative density function of a linear combination of χ2 distributed random variables, which can be calculated either approximately or exactly to high precision. Acceleration via multithreading and GPU is supported. The code of PascalX is fully open source and well suited as a base for method development in the GWAS enrichment test context.
The source code is available at https://github.com/BergmannLab/PascalX and archived under doi://10.5281/zenodo.4429922. A user manual with usage examples is available at https://bergmannlab.github.io/PascalX/.
Mots-clé
Genome-Wide Association Study, Gene Library, Software, Polymorphism, Single Nucleotide, Libraries
Pubmed
Open Access
Oui
Création de la notice
08/05/2023 10:00
Dernière modification de la notice
23/01/2024 7:35
Données d'usage