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Abstract

Summary: ‘PascalX’ is a Python library providing fast and accurate tools for mapping SNP-wise GWAS summary statistics. Specifically, it allows
for scoring genes and annotated gene sets for enrichment signals based on data from, both, single GWAS and pairs of GWAS. The gene scores
take into account the correlation pattern between SNPs. They are based on the cumulative density function of a linear combination of »?
distributed random variables, which can be calculated either approximately or exactly to high precision. Acceleration via multithreading and GPU
is supported. The code of PascalX is fully open source and well suited as a base for method development in the GWAS enrichment test context.

Availability and implementation: The source code is available at https://github.com/Bergmannlab/PascalX and archived under doi://10.5281/
zenodo.4429922. A user manual with usage examples is available at https://bergmannlab.github.io/PascalX/.

1 Introduction

Genome-wide association studies (GWASs) are well estab-
lished for identifying links between genotypes and pheno-
types. The results of such studies are usually freely shared in
terms of summary statistics containing single SNP effect sizes.
Aggregating such effects at the level of genes or pathways (i.e.
annotated gene sets) map potential signals to biologically rele-
vant entities, reducing the burden of multiple hypotheses test-
ing and increasing power. There exist many aggregation
methods, which differ by their statistical method, required
input, approximation, and computational needs, c.f. de
Leeuw et al. (2016) for a review.

Our original pathway scoring algorithm ‘Pascal’
(Lamparter et al. 2016) used sum of squared (normalized) ef-
fect sizes to score genes or pathways. In general, the cumula-
tive distribution function (CDF) of such scores is a linear
combination of y? variables under the null hypothesis, which
can be computed efficiently. The linear combination coeffi-
cients are the eigenvalues of the SNP-SNP covariance matrix,
whose off-diagonal elements are due to linkage disequilib-
rium, potentially inducing correlated individual SNP effects.
The advantage of this method is that, like MAGMA (de
Leeuw et al. 2015), its underlying statistic can be computed
relatively fast and quasi-analytically, not requiring any
approximations or perturbation-based estimates. Yet, in con-
trast to some other methods like ACAT (Liu et al. 2019), it
does require an estimate of the SNP-SNP covariance matrix.

With the ever growing sample sizes used in current GWAS,
also the signal strengths have been increasing. This can give

rise to scores whose significance is so high that they cannot be
computed accurately anymore with the double precision algo-
rithms implemented in the original ‘Pascal’ software, resulting
in unresolved rankings between the top genes.

The software described in this application note, called
‘PascalX’, solves this issue through a C++ multi-precision im-
plementation of the CDF calculation (making use of the boost
libraries, www.boost.org), interfaced via C Foreign Function
Interface with a re-implementation of the original exact gene
and pathway scoring of Lamparter et al. (2016) in Python.
We also show that a saddle-point approximation (Kuonen
1999) is a viable alternative with an acceptable loss of
accuracy (see online supplementary material), in particular if
computation time is relevant. Our ‘PascalX’ implementation
offers several further technical improvements over the original
‘Pascal’, namely intrinsic parallelization, possibility for GPU
acceleration of linear algebra operations, and a new data stor-
age model with fast random access. A detailed performance
comparison to the original Pascal software can be found in
the online supplementary material.

Furthermore, ‘PascalX’ also includes several new gene and
pathway scoring methods. Specifically, it allow for cross-
scoring using two sets of GWAS summary statistics using our
recently proposed gene coherence and ratio enrichment tests
(Krefl and Bergmann 2022). It also implements the possibility
of not only selecting SNPs by window around gene transcrip-
tion sites, but also for selecting SNPs by additional marker
data. For instance, using the SNP to gene linking of Gazal
et al. (2022), as demonstrated in Supplementary Figs S5-S7.
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We provide ‘PascalX’ as fully open source python library,
with a modern modular structure, extensive documentation,
and a permissive AGPL-3.0 license. Our code components
can easily be modified or replaced, making ‘PascalX’ an ideal
code base for research on high-level analysis of GWAS sum-
mary statistics, including alternative scoring schemes, such as
e.g. ACAT (Liu et al. 2019). We also provide a direct com-
mand line interface covering core functionalities, facilitating
easy integration into production pipelines.

2 Features
2.1 CDF calculation

‘PascalX’ implements two common algorithms for the exact
(up to a requested precision) calculation of the CDF of a
linear combination of N random variables following a z?
distribution, namely Ruben’s (Ruben 1962; Sheil and
O’Muircheartaigh 1977; Farebrother 1984) and Davies’ algo-
rithm (Davies 1973). While Ruben’s algorithm only supports
positive coefficients, Davies’ algorithm also works for linear
combinations with negative coefficients. For approximate
calculation of the CDF, ‘PascalX’ offers the moment-based
methods of Satterthwaite—Welch (Welch 1938; Satterthwaite
1946) and Imhof-Pearson (Pearson 1959; Imhof 1961),
and calculation via saddle-point approximation (Kuonen
1999).

To the best of our knowledge, ‘PascalX’ is the first pathway
scoring method using multi-precision arithmetic to achieve
sufficient precision for application to modern GWAS data.
Specifically, ‘PascalX’ can compute the CDF exactly up to a
precision of 100 digits. We confirmed the correctness of the
CDF calculations at high precision by cross-verifying Ruben’s
and Davies’ algorithm against each other, see Supplementary
Figs S1 and S2. Depending on the parameters of the linear
combination, one of the algorithms may be strongly preferred
over the other in run-time. In particular, multi-precision arith-
metic is computationally expensive, and we do not know the
needed precision for a particular CDF evaluation before-
hand. Therefore, ‘PascalX’ utilizes a simple heuristic, switch-
ing automatically between algorithm and level of precision,
to evaluate the CDF usually much faster than employing
only one of the algorithms at fixed high precision (see
Supplementary Section S1.4 for more details).

Both algorithms compute the CDF exactly up to a desired
precision. This differs from a more commonly applied ap-
proximate calculation. So far the quality of such approxima-
tions has only been studied at low precision in Bodenham and
Adams (2016), but there are no equivalent published results
for the high-precision setting (i.e. beyond double precision).
Using our high-precision implementation of the exact solu-
tion, we showed that the two moment-based approximations
lead to substantial overestimation of significance in several
parameter regimes, in particular for small N. In contrast, the
saddle-point method yields a very good approximation, also
for small N (see Supplementary Figs S3 and S4). Therefore,
the saddle-point method is in general a good choice due to its
superior performance and high accuracy (see Supplementary
Figs S9-512). ‘PascalX’ uses the saddle-point approximation
as default.

2.2 Gene scoring

The gene scoring algorithm employed to test for GWAS gene
enrichment has been originally introduced in Lamparter et al.
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(2016). ‘PascalX’ exclusively uses the sum of y> method,
which is based on the test statistic for a gene G
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under the null assumption that z ~ N(0,%g). Here, Ng
denotes the number of SNPs in the gene region, z; the inverse
normal transformed GWAS effect size P-value of the ith SNP
and X the SNP-SNP covariance matrix inferred from the ge-
notype of a reference population. It can be shown that

T~ ulr] = [E),

with /; the ith eigenvalue of X. Hence, T follows a linear
combination of y3 distributions, and gene enrichment can
therefore be tested for via the P-value P = 1 — CDFg(T). The
calculation of the CDF is described in Section 2.1.
Benchmarking results for a set of standard GWAS and differ-
ent choices of method to calculate the CDF are shown in
Supplementary Fig. S13. Note that one can introduce an addi-
tional weighting of SNPs into the test statistic defined in
Equation (1). The corresponding null distribution still follows
a linear combination of y} distributions. Details are given in
Supplementary Section S2.

2.3 Cross-scoring

PascalX implements two novel cross GWAS gene coherence
enrichment tests based on the product-normal distribution,
described in detail in Krefl and Bergmann (2022). The first
test, referred to as coherence test, is the statistics
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with z and w effect sizes of two different GWAS, both as-
sumed to be following N(0,Z¢) under the null. The second
test, called ratio test, is given by
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or with z and w interchanged. As derived in Krefl and
Bergmann (2022), the null distribution of these two new sta-
tistical tests can also be expressed in terms of a linear combi-
nation of y? distributions, albeit for these tests the linear
combination contains also negative coefficients, such that
only Davies’ algorithm can be applied for calculation of the
corresponding CDF, see Supplementary Section S1.

R¢g =

2.4 Pathway scoring

The pathway scoring algorithm PascalX makes use of to ag-
gregate individual gene scores to pathway level scores is the
gene fusion-based algorithm of Lamparter et al. (2016). In
detail, genes in a pathway, which are in close proximity to
each other, are fused to form a so-called meta-gene, and a
corresponding gene score is calculated as for ordinary
genes described in Section 2.2. This corrects for LD induced
dependencies between the individual gene scores, such that
one can test for pathway enrichment against a y% distribution
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under ranking and inverse transforming the individual gene
P-values to y3 distributed random variables. Since the main
ingredient are the gene scores described in Section 2.2, the
improvements in the original genescoring PascalX offers are
directly inherited to the pathway scoring.

Since the pathway scoring is independent on the origin of
the gene scores, pathway enrichment can also be tested for the
cross-enrichment scores of Section 2.3.

2.5 Acceleration

2.5.1 Multithreading

Computations on individual gene level with GWAS data are
ideally suited for acceleration via parallelization, as computa-
tions for each gene can be performed independently from other
genes. PascalX makes use of this and offers the option to
parallelize computations via python multiprocessing. The per-
formance gain achievable is illustrated in the Supplementary
Figs S13-S15.

2.5.2GPU

The PascalX methodology requires the computation of large
genotypic covariance matrices, and eigenvalue decomposi-
tions thereof. It is well known that such basic linear algebra
matrix operations can be significantly speedup on specialized
hardware, like graphic processor units. Therefore, PascalX
supports GPU acceleration of these operations, making use of
the ‘cupy’ library (Okuta et al. 2017). The performance gain
is significant, as is illustrated in Supplementary Figs S13-S15.

2.5.3 Storage

PascalX requires fast random access to SNP level genotypes
of a reference population. Therefore, PascalX stores the geno-
types in its own format, indexed by genomic position and var-
iant id. Only indices are kept in memory and the genotypes
are read on the fly from storage. In detail, the data for each in-
dividual SNP are stored serialized via pickle with additional
zlib compression. The corresponding position on disk is
stored in indices for genomic position and variant id for fast
random access retrieval.
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