The tidyomics ecosystem: enhancing omic data analyses.

Détails

ID Serval
serval:BIB_D2FD0777383A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
The tidyomics ecosystem: enhancing omic data analyses.
Périodique
Nature methods
Auteur⸱e⸱s
Hutchison W.J., Keyes T.J., Crowell H.L., Serizay J., Soneson C., Davis E.S., Sato N., Moses L., Tarlinton B., Nahid A.A., Kosmac M., Clayssen Q., Yuan V., Mu W., Park J.E., Mamede I., Ryu M.H., Axisa P.P., Paiz P., Poon C.L., Tang M., Gottardo R., Morgan M., Lee S., Lawrence M., Hicks S.C., Nolan G.P., Davis K.L., Papenfuss A.T., Love M.I., Mangiola S.
Collaborateur⸱rice⸱s
tidyomics Consortium
ISSN
1548-7105 (Electronic)
ISSN-L
1548-7091
Statut éditorial
Publié
Date de publication
07/2024
Peer-reviewed
Oui
Volume
21
Numéro
7
Pages
1166-1170
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
The growth of omic data presents evolving challenges in data manipulation, analysis and integration. Addressing these challenges, Bioconductor provides an extensive community-driven biological data analysis platform. Meanwhile, tidy R programming offers a revolutionary data organization and manipulation standard. Here we present the tidyomics software ecosystem, bridging Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic analysis, ease learning and encourage cross-disciplinary collaborations. We demonstrate the effectiveness of tidyomics by analyzing 7.5 million peripheral blood mononuclear cells from the Human Cell Atlas, spanning six data frameworks and ten analysis tools.
Mots-clé
Humans, Software, Computational Biology/methods, Leukocytes, Mononuclear/metabolism, Leukocytes, Mononuclear/cytology, Genomics/methods, Data Analysis
Pubmed
Web of science
Création de la notice
20/06/2024 14:04
Dernière modification de la notice
16/07/2024 6:09
Données d'usage