The tidyomics ecosystem: enhancing omic data analyses.

Details

Serval ID
serval:BIB_D2FD0777383A
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
The tidyomics ecosystem: enhancing omic data analyses.
Journal
Nature methods
Author(s)
Hutchison W.J., Keyes T.J., Crowell H.L., Serizay J., Soneson C., Davis E.S., Sato N., Moses L., Tarlinton B., Nahid A.A., Kosmac M., Clayssen Q., Yuan V., Mu W., Park J.E., Mamede I., Ryu M.H., Axisa P.P., Paiz P., Poon C.L., Tang M., Gottardo R., Morgan M., Lee S., Lawrence M., Hicks S.C., Nolan G.P., Davis K.L., Papenfuss A.T., Love M.I., Mangiola S.
Working group(s)
tidyomics Consortium
ISSN
1548-7105 (Electronic)
ISSN-L
1548-7091
Publication state
Published
Issued date
07/2024
Peer-reviewed
Oui
Volume
21
Number
7
Pages
1166-1170
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
The growth of omic data presents evolving challenges in data manipulation, analysis and integration. Addressing these challenges, Bioconductor provides an extensive community-driven biological data analysis platform. Meanwhile, tidy R programming offers a revolutionary data organization and manipulation standard. Here we present the tidyomics software ecosystem, bridging Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic analysis, ease learning and encourage cross-disciplinary collaborations. We demonstrate the effectiveness of tidyomics by analyzing 7.5 million peripheral blood mononuclear cells from the Human Cell Atlas, spanning six data frameworks and ten analysis tools.
Keywords
Humans, Software, Computational Biology/methods, Leukocytes, Mononuclear/metabolism, Leukocytes, Mononuclear/cytology, Genomics/methods, Data Analysis
Pubmed
Web of science
Create date
20/06/2024 14:04
Last modification date
16/07/2024 6:09
Usage data