Transcriptomic biomarkers of altered erythropoiesis to detect autologous blood transfusion.
Détails
Télécharger: 28670860_final_pp.pdf (699.29 [Ko])
Etat: Public
Version: Author's accepted manuscript
Etat: Public
Version: Author's accepted manuscript
ID Serval
serval:BIB_D10E2B16EB63
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Transcriptomic biomarkers of altered erythropoiesis to detect autologous blood transfusion.
Périodique
Drug testing and analysis
ISSN
1942-7611 (Electronic)
ISSN-L
1942-7603
Statut éditorial
Publié
Date de publication
03/2018
Peer-reviewed
Oui
Volume
10
Numéro
3
Pages
604-608
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
Autologous blood transfusion is a powerful means of improving performance and remains one of the most challenging methods to detect. Recent investigations have identified 3 candidate reticulocytes genes whose expression was significantly influenced by blood transfusion. Using quantitative reverse transcription polymerase chain reaction as an alternative quantitative method, the present study supports that delta-aminolevulinate synthase 2 (ALAS2), carbonic anhydrase (CA1), and solute carrier family 4 member 1 (SLC4A1) genes are down-regulated post-transfusion. The expression of these genes exhibited stronger correlation with immature reticulocyte fraction than with reticulocytes percentage. Moreover, the repression of reticulocytes' gene expression was more pronounced than the diminution of immature reticulocyte fraction and reticulocyte percentage following blood transfusion. It suggests that the 3 candidate genes are reliable predictors of bone marrow's response to blood transfusion and that they represent potential biomarkers for the detection of this method prohibited in sports.
Mots-clé
5-Aminolevulinate Synthetase/genetics, Adult, Anion Exchange Protein 1, Erythrocyte/genetics, Blood Transfusion, Autologous/methods, Carbonic Anhydrase I/genetics, Doping in Sports/methods, Down-Regulation, Erythropoiesis, Humans, Male, Reticulocytes/cytology, Reticulocytes/metabolism, Transcriptome, IRF, transcriptomics, transfusion
Pubmed
Web of science
Open Access
Oui
Création de la notice
04/07/2017 13:06
Dernière modification de la notice
21/11/2022 8:24