Identification of the local speed function in a Levy model for option pricing
Détails
Télécharger: BIB_D05494090793.P001.pdf (552.38 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_D05494090793
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Identification of the local speed function in a Levy model for option pricing
Périodique
Journal of Integral Equations and Applications
ISSN
0897-3962
Statut éditorial
Publié
Date de publication
2008
Peer-reviewed
Oui
Volume
20
Numéro
2
Pages
161-200
Langue
anglais
Résumé
We propose a non-parametric stable calibration method based on Tikhonov regularization for the local speed function in a local L´evy model. The jump term in this model introduces an integral operator into the classic BlackScholes partial differential equation such that the associated model calibration to observed option prices can be treated as a parameter identification problem for a partial integrodifferential equation. This problem is shown to be ill-posed and thus requires regularization. It is proven that nonlinear Tikhonov regularization is a stable and convergent method for this problem. Furthermore, convergence rate results are established under an abstract source condition. Finally the theoretical results are underpinned by numerical illustrations including a real-world example.
Open Access
Oui
Création de la notice
09/02/2009 18:57
Dernière modification de la notice
20/08/2019 15:50