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Abstract

We propose a non-parametric stable calibration method based on Tikhonov

regularization for the local speed function in a local Lévy model. The

jump term in this model introduces an integral operator into the classic

Black-Scholes partial di�erential equation such that the associated model

calibration to observed option prices can be treated as a parameter identi-

�cation problem for a partial integro-di�erential equation. This problem

is shown to be ill-posed and thus requires regularization. It is proven

that nonlinear Tikhonov regularization is a stable and convergent method

for this problem. Furthermore, convergence rate results are established

under an abstract source condition. Finally the theoretical results are

underpinned by numerical illustrations including a real-world example.

1 Introduction

During the last decades, it became more and more obvious that the famous
Black & Scholes model cannot adequately describe the stochastic behaviour of
�nancial markets. Hence, much work has been devoted to �nd more appropriate
models, which are able to reproduce the stylized facts of the observed asset price
processes, as skewed log-returns and volatility clusters.
One idea of adapting the Black & Scholes model was pioneered by Dupire [13]
and Derman & Kani [12], who modeled the volatility as a deterministic func-
tion of asset price and time (in contrast to assuming a stochastic process for
the volatility leading to so-called stochastic volatility models, see e.g. [19] for
di�usion-based or [5] for Lévy-type models). The motivation behind this idea
was given by Gyöngy [21], who showed that the marginals of any Itô process
can be recovered by such a model.
It is essential for the applicability of any model that it can be calibrated to
traded market prices. The major task in the local volatility framework is to
identify the local volatility function, which is well known to be an ill-posed
problem and hence needs some regularization. The robustness and basic con-
vergence rates for the Tikhonov-regularized inverse problem were proven e.g. by
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Crepey [11] and detailed convergence rates were obtained by Egger & Engl [14].
Although the Dupire model has some desireable properties (such as improv-
ing upon modelling the smile phenomenon, simple option pricing schemes and
model completeness), there are also severe drawbacks. For instance, the normal
distribution is symmetric and hence skewness in the local volatility model can
only be introduced by means of a non-constant volatility function. This often
results in a local volatility surface that tends to be steep for small t and to �at-
ten out quite rapidly for larger values of time t. The resulting term structure
of the local volatility function can lead to serious problems in pricing exotic op-
tions with the Dupire model (for details see e.g. Andersen & Andreasen [2] and
references therein). Whereas the local volatility model is nevertheless widely
used in practice as an interpolation scheme, it does not give an interpretation
of the resulting market dynamics.
On the other hand, exponential Lévy models (with constant volatility) can ex-
plain stylized facts such as skewness and excess kurtosis through the presence
of jumps in the asset price process, but usually fail to give a reasonable �t to
liquid vanilla market quotes across all strikes and maturities (see e.g. [7, 36]).
To overcome these problems, Carr et al. [6] introduced the so-called local Lévy
model as a generalization of both the exponential Lévy and the Dupire model.
In this model, in addition to the local volatility concept of the Dupire model,
the asset price process includes jumps driven by a Lévy process where the jump
intensity is a parameter that evolves deterministically over time and is called
local speed function. Just as in the Dupire model, where the log price process
can be interpreted as a Brownian motion running at the speed of the square of
the local volatility function, the log price process in the local Lévy model (in
the absence of the di�usion component) can be interpreted as a (�xed) Lévy
process running at a space-time dependent speed. The local Lévy model has,
in addition to being capable of �tting the whole European option price surface,
also a persistent skew, if an asymmetric jump size distribution is used for the
jump part. In this way, it incorporates the advantages of the Dupire model and
at the same time provides richer risk-neutral dynamics. In order to use the local
Lévy model one needs to identify the Lévy measure of the jump part (together
with the parameter of the continuous part) and the local speed function.
The �rst problem - a non-parametric estimation of an exponential Lévy mar-
ket - has attracted much attention lately. For instance, Cont & Tankov [8, 9]
proposed a robust non-parametric method to recover the Lévy measure from
observed option prices, if the Lévy measure is assumed to be bounded. Another
approach was proposed by Belomnesty & Reis [3, 4], who showed that the Lévy
measure can be identi�ed using the semi-closed formula for option prices involv-
ing the characteristic function of the asset price and an asymptotic analysis. In
�nancial practice it is also quite common to �x a certain type of Lévy mea-
sure beforehand and then calibrate the involved parameters from market data.
Cont & Tankov [9] observed that the stably calibrated exponential Lévy market
model, while leading to good results for a single maturity, cannot adequately �t
the observed option prices across several maturities. Furthermore they recog-
nized that the Lévy measure changes structurally over time. By introducing the
local speed function this behavior can be incorporated into the model. Hence
by identifying this function, a given exponential Lévy process can be adapted
to a more appropriate model for the asset price.
In this paper we are concerned with this question, i.e. given an exponential Lévy
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model, how can this model be adapted by means of the local speed function
to �t the observed European option prices across all maturities. Extending
the analysis of Carr et al. [6], we show a way to robustly identify the local
speed function by using the observed prices of European options and prove
convergence results for this inverse problem. Also, within regularization theory
the usual problem of bid-ask spreads of market option prices can be interpreted
as a problem of data noise, which allows to incorporate the degree of liquidity
into the calibration procedure.
The structure of the paper is as follows: Section 2 introduces the local Lévy
model in more detail and de�nes the inverse problem to be solved. To deal
with the ill-posedness of the problem (see Section 5), a regularization is needed
to obtain robust calibration results. Section 3 proves that the corresponding
forward operator is well-de�ned and Section 4 establishes some of its properties.
These are used in Section 5 to prove stability of the Tikhonov-regularized inverse
problem and to obtain convergence rates of the regularized solutions. Finally,
in Section 6 we give numerical illustrations of the theoretical results.

2 The local Lévy model and the inverse problem

We will assume the asset price S to have the following risk-free dynamics:

St = S0 +
∫ t

0

(r − η)Ss− ds+
∫ t

0

σ0(Ss− , t)Ss− dWs

+
∫ t

0

∫
R

(ex − 1)
(
m(Ss− ,s)(dx, ds)− ν(Ss− ,s)(dx, ds)

)
, (1)

where r is the riskless interest rate, η is the dividend yield, m is the jump-
count-measure and ν is its compensator. The above dynamics is equivalent to
the following representation:

St = e(r−η)teXt , (2)

where eXt is a martingale.
Following Carr et al. [6] we may introduce the local speed function a0(St, t)
governing the speed at which the jumps arise, i.e., we set:

ν(St− ,t)(dx, dt) = a0(St− , t)ν(dx, dt). (3)

Note that the above setting implies that the arrival rate of the jumps depends
on time and state, while the jump size distribution itself remains unchanged
over time.
We want to calibrate the above model to the observed option prices. As the call
option payo� is a convex function, the Tanaka-Meyer formula (see [32]) can be
used to derive a partial integro-di�erential equation for the European call price
C(K,T ) with strike K and maturity T . This was done in [6], and the partial
integro-di�erential equation (PIDE) reads as follows:

CT = −ηC − (r − η)KCK +
σ2

0(K,T )
2

K2CKK

+
∫ ∞

0

Y CKK(Y, T )a0(Y, T )ψe

(
log
(
K

Y

))
dY on R+ × [0, T ∗] (4)
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where r is the riskless interest rate, η is the dividend yield, σ0 is the volatility, a0

is local speed function de�ned in (3), T ∗ is the �nite planning horizon (e.g. the
largest option maturity available in the market) and ψe is the double-exponential
tail of the Lévy measure given by

ψe(z) =
{ ∫ z

−∞ (ez − ex) ν(dx) for z < 0∫∞
z

(ex − ez) ν(dx) for z > 0.

Note that the function ψe is similar to the price of out-of-the money puts and
calls, respectively. In fact, for z > 0, it is the expected value of (ex−ez)+ under
the Lévy-measure ν, which governs the jumps of the asset price process. As we
shall see later on, ψe(z) plays a crucial role in the calibration of the local speed
function as well as in the degree of ill-posedness of the inverse problem.

Remark 1. For notational convenience the following analysis is based on the
assumption that r and η are constants. The analysis can, however, easily be
extended to the case where r and η are deterministic functions of time.

In order to solve the partial integro-di�erential equation (4) uniquely, it has to
be supplemented with initial and boundary values: The initial value of the price
of a European call option is given by

C(K, 0) = (S −K)+ = max(S −K, 0). (5)

Moreover, we impose the following boundary conditions

C(0, T ) = e−ηTS, C(∞, T ) = 0. (6)

A change of variables k = ln K, y = ln Y and

c(k, T ) = eηTC(ek, T ) ⇔ C(K,T ) = e−ηT c(log(K), T )

leads to the equation

cT (k, T ) +
(
r − η +

σ(k, T )2

2

)
ck(k, T )− σ2(k, T )

2
ckk(k, T )

=
∫ ∞

−∞
(ckk − ck) (y, T )a(y, T )ψe(k − y) dy on R× [0, T ∗], (7)

with
a(y, T ) := a0(ey, T ) and σ(k, T ) := σ0(ek, T ).

The initial condition and the boundary conditions now read

c(k, 0) = (S − ek)+, (8)

c(∞, T ) = 0, (9)

c(−∞, T ) = S. (10)

Our aim is to identify the function a from the observed values of c(k, T ) (the
liquid European call option prices in the market) given �xed values for the other
model parameters, in particular a local volatility function σ. We formulate the
problem as an abstract operator equation, which allows us to use a standard
regularization approach for solving it.
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We de�ne a forward operator F mapping the local speed function a to the option
price c(k, T ) for those time values t and log-strikes k, where data are given. Since
we do not know the price for all times t and all strikes k, it is convenient to split
F into an observation operator O and a parameter-to-solution operator F̃ .
The mapping F̃

F̃ : a→ c(k, T ) k ∈ R, T ∈ [0, T ∗]

assigns to a given local speed function a the corresponding transformed option
price c(k, T ), which is a solution to (7) - (10) for all k, T in R× [0, T ∗].
The linear observation operator O is simply the restriction of c to the set of
points Ωdat ⊂ R× [0, T ∗] for which data are given:

O : c→ c(k, T ) (k, T ) ∈ Ωdat.

In total, we have a forward operator

F (a) := OF̃ (a) (11)

and the calibration problem can be written as the operator equation

F (a) = y, (12)

where y are the given data of option prices at Ωdat.
We cannot expect that equation (12) can be solved stably for a, in fact it is
well-known that the similar identi�cation problem of the volatility in the Black-
Scholes equation is ill-posed in reasonable function spaces [14].
In Section 5 we show that the local Lévy problem above is ill-posed as well. It is
well-known that in this situation a standard algorithm for solving (12) (e.g. just
least squares minimization) might fail (because of instability) and one should
instead apply regularization methods to this equation. The main idea of these
methods is that, instead of the ill-posed equation (12), a related (well-posed)
problem is solved. By solving this regularized problem the instability of the orig-
inal problem is removed, at the cost of introducing an additional approximation
error. In regularization theory one usually deals with a parameterized family
of regularized problems. Within this family of problems the free regularization
parameter has to be chosen in such a way to �nd a compromise between accu-
racy of the approximation of the original problem and stability. This choice of
the regularization parameter (parameter choice rule) has to be done depending
on the level of noise in the data y.
A very common regularization method, mainly for linear, but also for nonlinear
problems is Tikhonov regularization, by which an approximate solution is found
by minimizing the so-called Tikhonov functional

J(a) := ‖F (a)− yδ‖2 + α‖a− a∗‖2s. (13)

Here F is the forward operator de�ned in (11), yδ is the data (the observable
option prices), possibly contaminated with noise, a∗ is an initial guess, α > 0
the regularization parameter and ‖.‖s denotes an appropriate norm in a Sobolev
space. Convergence (and convergence rates) of Tikhonov regularization for the
linear case can be found in [20, 30] and for the nonlinear case in [17, 28, 31]. For
further information concerning Tikhonov regularization we refer to the mono-
graph [16].
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Using the general and well-known theory of Tikhonov regularization, in Section
5 we will show that under certain conditions nonlinear Tikhonov regularization
yields a convergent regularization method also for the calibration problem (12).
The main building blocks for the applicability of the general theory are proving
continuity and di�erentiability properties of F , which we will be concerned with
in Section 4.
However, we �rst have to show that F is a well-de�ned operator, i.e. we have
to show that the PIDE (7)-(10) has a unique solution c. This is the topic of the
next section.

3 Existence and Uniqueness of a solution to the

PIDE

To show the existence of a solution to the forward problem (7) together with (8),
(9) and (10), we will use some techniques (especially subtracting the payo� from
the call price to get homogeneous boundary conditions) developed in Matache
et al. [29], who showed solvability of the backward problem in the exponential
Lévy market case (see also [10]). Here we extend this solvability result to the
local Lévy market case.
We denote by I the integral operator, de�ned as the convolution with ψe:

I : v →
∫ ∞

−∞
v(y, T )ψe(k − y)dy

and by La the integro-di�erential operator

La : v →
(
r − η +

σ2(k, T )
2

)
vk(k, T )− σ2(k, T )

2
vkk(k, T )

−
(
I [a(vkk − vk)]

)
(k, T ),

where the functions c, a, σ may depend on k, T .
Then equation (7) can be written as

cT + Lac = 0.

Since the boundary conditions are not homogeneous following [29] we subtract
the payo� function from c and consider

ĉ(k, T ) := c(k, T )− (S − ek)+. (14)

The derivatives of (S − ek)+ in the sense of distributions are as follows:

g0(k) := (S − ek)+

g1(k) :=
d

dk
(S − ek)+ =

{
−ek k ≤ log(S)
0 else

(15)

g2(k) :=
d2

dk2
(S − ek)+ =

{
−ek k ≤ log(S)
0 else

+ Sδlog(S). (16)

Now, by de�nition (14), ĉ has to satisfy (g0 does not depend on time)

ĉT + Laĉ = −Lag0 (17)
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with homogeneous boundary conditions.
We consider the following Hilbert spaces with the obvious inner products:

H := L2(R) =
{
f :

∫
R
|f(x)|2dx <∞

}
V := H1(R) =

{
f ∈ L2(R) :

∫
R
|f(x)|2dx+

∫
R
|f ′(x)|2dx <∞.

}
It is well known, that V is the closure of C∞0 (R) in the norm H1, i.e. any
element in V can be approximated by C∞0 (R) functions.
We will show existence of (17) in the space L2([0, T ∗], V ). Since the space V
can be embedded continuously into H, V → H → V ′ (V ′ being the dual space
of V ) forms a Gelfand triple. The crucial point for an existence proof of (17) is
the Gårding inequality (22) and the fact that Lag0 ∈ L2([0, T ∗], V ′). To show
these properties we need the following assumptions:

Assumptions

σ(k, T ) ∈ L∞([0, T ∗],W 1,∞(R)) (18)

σ(k, T ) ≥ c0 > 0 for (k, T ) ∈ R× [0, T ∗] (19)

E [St lnSt] <∞, 0 ≤ t ≤ T ∗, for St de�ned in (1) (20)

a(k, T ) ∈ L∞(R× [0, T ∗]), ak(k, T ) ∈ L∞([0, T ∗], L2(R)). (21)

First we prove the Gårding inequality for the integro-di�erential operator La

and continuity of the corresponding bilinear form:

Proposition 1. Let assumptions (18)-(21) hold, then there exist some constants
b > 0, γ and B such that

(Lau, u)V ′,V ≥ b‖u‖2V − γ‖u‖2L2 (22)

and
(Lau, v)V ′,V ≤ B‖u‖V ‖v‖V . (23)

Proof. Let u, v ∈ C∞0 . Multiplication of Lau by v and integration gives a bilinear
form AT

AT (u, v) := (Lau, v)

=
∫

R

((
r − η +

σ2(k, T )
2

)
uk(k)− σ2(k, T )

2
ukk(k)

)
v(k)dk

−
∫

R
(I [a(ukk − uk)])(k, T )) v(k)dk.

Integrating by parts we get

AT (u, v) = I1(u, v) + I2(u, v) + I3(u, v),

where

I1(u, v) =
∫

R

(
r − η +

σ2(k, T )
2

+ σ(k, T )σk(k, T )
)
uk(k)v(k) dk

I2(u, v) =
∫
uk(k)

σ2(k, T )
2

vk(k) dk

I3(u, v) = −
∫

(I [a(ukk − uk)])(k, T )v(k) dk
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If we assume (18), we obtain with some constants B0, B1

|I1(u, v)| ≤ (B0 + ‖σ(., T )‖2L∞ + ‖σ(., T )‖L∞‖σk(., T )‖L∞)‖uk‖L2‖v‖L2

≤ B1‖uk‖L2‖v‖L2 .

From (19) we obtain
I2(u, u) ≥ c0‖uk‖2L2

and again with (18)
I2(u, v) ≤ B2‖uk‖L2‖vk‖L2 .

Now let us look at the term I3: substituting k = k+y, integrating by parts and
interchanging the order of integration (applying Fubini's theorem) yields

|I3(u, v)| =
∣∣∣∣∫

R

∫
R
ψe(k − y)a(y, T )(ukk(y)− uk(y)) dy v(k) dk

∣∣∣∣
≤ |i1|+ |i2|+ |i3|

with

|i1| =
∣∣∣∣∫

R
ψe(k)

∫
R
v(k + y)(a(y, T ))uk(y) dy dk

∣∣∣∣ ,
|i2| =

∣∣∣∣∫
R
ψe(k)

∫
R
v(k + y)(ak(y, T ))uk(y) dy dk

∣∣∣∣ ,
|i3| =

∣∣∣∣∫
R
ψe(k)

∫
R
vk(k + y)a(y, T )uk(y) dy dk

∣∣∣∣ .
Before discussing these integrals in detail we show that |ψe| is integrable:∫ ∞

−∞
|ψe(x)|dx =

∫ ∞

0

∫ ∞

z

(ex − ez) ν(dx) dz

+
∫ 0

−∞

∫ z

−∞
(ez − ex) ν(dx) dz.

For the sake of brevity we will just consider the �rst integral, as for the second
one the arguments are similar.
With the help of Tonelli's theorem we can interchange the order of integration
to �nd∫ ∞

0

∫ ∞

z

(ex − ez) ν(dx) dz =
∫ ∞

0

∫ ∞

x

(ex − ez) dz ν(dx)

=
∫ 1

0

(xex − ex + 1) ν(dx) (∗)

+
∫ ∞

1

(xex − ex + 1) ν(dx) (∗∗).

The integral (∗) exists, since

lim
x→0

xex − ex + 1
x2

=
1
2

and
∫ 1

0
x2ν(dx) <∞ for every Lévy measure. The integral (∗∗) is �nite, if (20)

is met (cf. Sato [35, Cor.25.8]).

8



Turning to the estimates for the integrals we �nd with the help of (21) and the
Hölder inequality for the �rst integral:

|i1| ≤ ‖a(., T )‖L∞‖v‖L2‖uk‖L2

∫
R
|ψe(k)| dk.

For i2 using the Sobolev embedding theorem results in:

|i2| ≤ ‖v‖L∞‖ak(., T )‖L2‖uk‖L2

∫
R
|ψe(k)| dk

≤ B4‖v‖Hs‖ak(., T )‖L2)‖uk‖L2

∫
R
|ψe(k)| dk,

with 1/2 < s < 1.
Hence we are left to deal with the Hs-norm of v. To that end we consider the
interpolation inequality

‖v‖Hs ≤ B5‖v‖s
H1‖v‖1−s

L2 .

Then by Young's inequality we get that for any ε > 0 a B6(ε) exists with

|i2| ≤
( ε

4
‖v‖H1 +B6(ε)‖v‖L2

)
‖ak(., T )‖L2‖uk‖L2

∫
R
|ψe(k)| dk.

Let us now turn to the integral i3. For arbitrary δ, applying partial integration
to the integral over {|k| > δ}, it can be bounded by

|i3| ≤
∣∣∣∣(ψe(δ) + ψe(−δ)

) ∫
R
v(k + δ)a(y, T )uk(y) dy dk

∣∣∣∣
+

∣∣∣∣∣
∫
{|k|>δ}

∂

∂k
ψe(k)

∫
R
v(k + y)a(y, T )uk(y) dy dk

∣∣∣∣∣
+

∣∣∣∣∣
∫
{|k|≤δ}

ψe(k)
∫

R
vk(k + y)a(y, T )uk(y) dy dk

∣∣∣∣∣
≤ B6‖a(., T )‖L∞‖v‖L2‖uk‖L2

(
ψe(δ) + ψe(−δ) +

∫
{|k|>δ}

∣∣∣∣ ∂∂kψe(k)
∣∣∣∣ dk

)

+B7‖a(., T )‖L∞‖vk‖L2‖uk‖L2

∫ δ

−δ

|ψe(k)| dk

≤ 2B6‖a(., T )‖L∞‖v‖L2‖uk‖L2(ψe(δ) + ψe(−δ))

+B7(δ)‖a(., T )‖L∞‖vk‖L2‖uk‖L2

∫ δ

−δ

|ψe(k)| dk,

where the fact was used, that ψe is di�erentiable everywhere except in zero,
∂
∂kψe(k) is non-positive for k > 0 and non-negative for k < 0 and furthermore

limk→∞ ψe(k) = 0. Hence for any δ > 0 the integral
∫
{|k|>δ}

∣∣ ∂
∂kψe(k)

∣∣ dk is

bounded.
Since

∫ δ

−δ
|ψe(k)| dk → 0 for δ → 0 there is a δ > 0, such that

∫ δ

−δ
|ψe(k)| dk <

ε/4 and hence:

|I3(u, v)| ≤ B8(ε)‖uk‖L2‖v‖L2 +
ε

2
‖uk‖L2‖vk‖L2 .

9



For later reference we state the main estimate of |I3|:

|I3(u, v)| ≤ R
(
‖a(., T )‖L∞ + ‖ak(., T )‖L2

)
‖ψe‖L1‖uk‖L2‖v‖V (24)

for some constant R > 0.
Thus AT (u, u) ful�lls

AT (u, u) ≥ (c0 − ε/2)‖uk‖2L2 −B9‖uk‖L2‖u‖H −B10‖u‖L2‖u‖L2 .

with a constant B9 depending on the norms of σ and a. By Young's inequality,
we have

‖uk‖L2‖u‖H ≤ ε

2
‖uk‖2L2 +

1
2ε
‖u‖2H

and
AT (u, u) ≥ (c0 − ε)‖u‖2V − γ(ε)‖u‖2H . (25)

Since ε can be arbitrarily small, AT satis�es the inequality (22). Moreover, by
the same estimates we obtain

|AT (u, v)| ≤ B‖u‖V ‖v‖V ,

which proves continuity of the bilinear form.

Now we can prove the main existence theorem:

Theorem 1. Let a and σ be such that (18)-(21) hold. Then there exists a
unique weak solution ĉ ∈ L2([0, T ∗], V ) of (17), i.e. a solution satisfying

(ĉT , φ)L2 + (Laĉ, φ)L2 = (−Lag0, φ)L2 ∀φ ∈ V, (26)

ĉ(0) = 0 (27)

and there are constants B,B′ such that

‖ĉ‖L2([0,T ],V ) ≤ B‖Lag0‖L2([0,T ],V ′) ≤ B′. (28)

Proof. The existence and uniqueness of a weak solution results from standard
parabolic theory (e.g. [27, 18]) using Proposition 1, if the right hand side of
(17) is in L2([0, T ], V ′). But this follows directly with the estimates for I1, I2, I3
in the proof of Proposition 1: Indeed, since g1 ∈ L2(R) we get

|(Lag0, v)| ≤ B0‖g1‖L2(‖v‖L2 + ‖vk‖L2),

for any v ∈ H1 and hence Lag0 ∈ L2([0, T ], V ′).

Note that using the same techniques as in Carr et al [6] it can be shown that
e(η−r)T E[(ST −K)+]− (S0 −K)+ ful�lls equation (26) and hence corresponds
in fact to the solution of the weak formulation of the PIDE.

Remark 2. Let us discuss the assumptions on the problem in more detail. The
smoothness and positivity condition (18), (19) on the volatility σ are common for
such problems, similar assumptions are also used for the local volatility problem
in the Black-Scholes setting. They are certainly satis�ed, if σ is taken to be a
positive constant. Condition (21) is a smoothness condition on the local speed
function and it de�nes the space in which we search for a.
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Condition (20) is a su�cient condition such that the double exponential tail
is integrable. It translates the integrability condition into a condition of the
stochastic process modelling the underlying S.
By de�nition, E[St] = ertS0 < ∞ for all arbitrage-free market models so that
(20) is not very restrictive (for instance, it holds if E[S1+δ

t ] <∞ for some δ > 0,
which is in particular the case whenever the variance of the asset price is �nite).

Remark 3. The main di�culty in the proof of Theorem 1 was the estimate
concerning the convolution terms. It is based on the special form of the double
exponential kernel such that its derivative is in L1

loc(R\{0}) and the fact that ψe

is integrable. Let us mention that the proof holds under alternative conditions on
ψe, which do not take into account the speci�c form of the kernel. For instance,
if ψe is such that I acts as a smoothing operator in Sobolev spaces H−s → L2, for
any s > 0 the term |i2| could be estimated from above by ‖a‖L∞‖v‖H1−s‖uk‖L2

and with an interpolation inequality and Young's inequality we still arrive at
(25). Alternatively, if ψe is such that I is a compact operator from L2 → L2

one could use Ehrling's lemma [34] with the same conclusion.

4 Properties of the parameter to solution map

For the application of regularization theory [16] we have to prove some basic
continuity and � for convergence rates results [16, 17] � di�erentiability proper-
ties of the forward operator F de�ned in (11). This is the topic of this section.
At �rst we focus on continuity of the parameter-to-solution map F̃ in a reason-
able space, i.e., the well-posedness of the forward problem. Note that F̃ was
de�ned as a mapping of the local speed function a to c (which is a solution
to (7)). In Section 3 it was convenient to subtract g0 from c and state the
integro-di�erential equation for ĉ de�ned in (14). For investigating the con-
tinuity properties of F̃ we will again subtract g0 from c and will analyze the
operator

G : a→ ĉ = F̃ (a)− g0. (29)

Of course, since g0 is a known function, which does not depend on a, continu-
ity of G will also imply continuity of F̃ , if g0 lies in the same space as G(a).
The only di�culty we face here is that g0(k) is not an L2(R) function, since
limk→−∞ g0(k) = S is a nonzero constant. Hence F̃ (a) is not in L2(R). One
possibility to prove continuity of F̃ would be to use a weighted L2-norm for the
image space of F̃ (compare [1]). Another possibility, which we will follow here,
is to subtract g0 from F̃ and also from the data to state an equivalent identi-
�cation problem with G as parameter-to-solution operator. This is convenient,
because in this case we can work with the usual L2 space.

4.1 Continuity

We now show the continuity of the modi�ed parameter-to-solution operator (29)

G : a→ ĉ,

with ĉ solution to (17).
We will use the following space for the local speed function a:

X := {a(k, T ) ∈ L∞(R× [0, T ∗]) | ak(k, T ) ∈ L∞([0, T ∗], L2(R))} (30)
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with norm

‖a‖X := ‖a‖L∞(R×[0,T∗]) + sup
t∈[0,T∗]

‖ak(·, T )‖L2(R).

For the norm on the image space of G we use L2([0, T ], V ).

Proposition 2. G is Lipschitz continuous from X → L2([0, T ], V ), i.e. there
exists a constant B such that for all a1, a2 ∈ X

‖G(a1)−G(a2)‖L2([0,T ],V ) ≤ B‖a1 − a2‖X .

Proof. According to the de�nition we have

G(a1)−G(a2) = ĉ1 − ĉ2,

where ĉ1, ĉ2 solve (17) with parameters a1 and a2, respectively. Now consider
the di�erence

v := ĉ1 − ĉ2.

Note that v ∈ H1 satis�es

vT + La1v = La2g0 − La1g0 + La2 ĉ2 − La1 ĉ2 (31)

=
(
Ia1 − Ia2

)
(g2 − g1)

+
(
Ia1 − Ia2

)( d2

dk2
ĉ2 −

d

dk
ĉ2

)
,

with homogeneous boundary conditions and g1, g2 as in (15) and (16), respec-
tively. Since v solves the same equation as ĉ with a di�erent right-hand side,
we can apply Theorem 1 to obtain an estimate with some constant B

‖v‖L2([0,T ],V ) ≤

B

∥∥∥∥(Ia1 − Ia2

)
(g2 − g1) +

(
Ia1 − Ia2

)( d2

dk2
ĉ2 −

d

dk
ĉ2

)∥∥∥∥
L2([0,T ],V ′)

.(32)

and hence, we have to estimate the right hand side of (31) in the norm of
L2([0, T ], V ′).
Let u ∈ V , with the use of (24) we then obtain∣∣(Ia1(g2 − g1)− Ia2(g2 − g1), u

)∣∣ ≤(
‖a1(., T )− a2(., T )‖L∞(R) + ‖

(
a1(., T )− a2(., T )

)
k
‖L2(R)

)
‖g1‖L2(R)‖u‖V ≤

B1

(
‖a1(., T )− a2(., T )‖L∞(R) + ‖

(
a1(., T )− a2(., T )

)
k
‖L2(R)

)
‖u‖V

where the last inequality follows from ‖g1‖L2(R) <∞. With ĉ2 in place of g0 we
�nd with the same arguments:∣∣∣∣((Ia1 − Ia2

)( d2

dk2
ĉ2 −

d

dk
ĉ2

)
, u

)∣∣∣∣ ≤
B2

(
‖a1(., T )− a2(., T )‖L∞(R) + ‖

(
a1(., T )− a2(., T )

)
k
‖L2(R)

)
‖u‖H1‖ d

dk
ĉ2‖L2 .
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Now we let u depend on time as well and integrate over time to get∣∣∣∣∣
∫ T

0

(
(La2g0 − La1g0), u

)
dt

∣∣∣∣∣ ≤ B1‖(a1 − a2)‖X‖u‖L2([0,T ],V )

and∣∣∣∣∣
∫ T

0

(
(La2 ĉ2 − La1 ĉ2), u

)
dt

∣∣∣∣∣ ≤ ‖(a1 − a2)‖X‖u‖L2([0,T ],V )‖ĉ2‖L2([0,T ],V ).

Because ‖ĉ2‖L2([0,T ],V ) is bounded by (28) we get

‖ (La2g0 − La1g0) + (La2 ĉ2 − La1 ĉ2) ‖L2([0,T ],V ′) ≤ B3‖(a1 − a2)‖X .

Together with (32) this proves the Lipschitz continuity of G.

4.2 Frechet-di�erentiability

Now by similar means we can compute the Frechet-derivative of G.

Proposition 3. G is Frechet-di�erentiable as a mapping from X → L2([0, T ], V )
and the Frechet derivative G′(a) is given by

G′(a) : h→ v,

where v solves the equation

vT + Lav = I
(
h

(
d2

dk2
ca −

d

dk
ca

))
, (33)

with homogenous boundary and initial conditions and

ca = ĉa + g0 = G(a) + g0 = F̃ (a).

Moreover, the Frechet derivative G′(a) is Lipschitz continuous.

(Note that the subscript a in ca, ĉa does not denote the derivative with respect
to a, but just indicates their dependence on a.)

Proof. We �rst have to show that (33) is well-de�ned, i.e. it has a unique
solution for any h ∈ X. Since v solves an equation similar to ĉ, but with
di�erent right-hand side, we can apply Theorem 1 with the right-hand side as
in (33). To show the existence and uniqueness of a weak solution we have to
bound this term in the L2([0, T ], V ′)-norm. However, this follows similarly as
in the proof of Lipschitz-continuity (Proposition 2) using (24), ca = g0 + ĉa and
(28). Following the proof in detail it can even be shown that∥∥∥∥−I (h( d2

dk2
ca −

d

dk
ca

))∥∥∥∥
L2([0,T ],V ′)

≤ B0‖h‖X . (34)

The next step is to show that the formal derivative G′(a) de�ned in (33) is really
the Frechet-derivative, i.e.

‖G(a+ h)−G(a)−G′(a)h‖L2([0,T ],V ) = o(‖h‖X). (35)
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For any a, a + h ∈ X let ĉa = G(a), ĉa+h = G(a + h) be the corresponding
solutions to (17) and v = G′(a)h de�ned in (33). The di�erence u := ĉa+h−ĉa−v
satis�es the equation

uT + Lau = I
(
h

(
d2

dk2
− d

dk

)
(ĉa+h − ĉa)

)
.

Again we can use the main estimate (28) to �nd that

‖u‖L2([0,T ],V ) ≤ B1‖Ih(ĉa+h − ĉa)‖L2([0,T ],V ′) ≤
B2‖h‖X‖(ĉa+h − ĉa)‖L2([0,T ],V ) ≤ B3‖h‖2X ,

which implies (35). The �rst inequality in the last line can be found by follow-
ing the proof of Proposition 2, while the second one stems from the Lipschitz
continuity of G.
Finally the Lipschitz continuity of the Frechet derivative can be derived by
observing that w = va − vã (va is the Frechet derivative of the parameter to
solution map G at point a) solves the following PIDE:

wT + Law = (Lã − La) vã + I
(
h

(
d2

dk2
− d

dk

)
(ĉa − ĉã)

)
.

As in the proof of Proposition 2 and using the continuity of G′(a) (i.e. the
bound ‖vã‖L2([0,T ],V ) ≤ C‖h‖X) the �rst term on the right hand side can be
estimated by

‖ (Lã − La) vã‖L2([0,T∗],V ′) ≤ B4‖a− ã‖X‖vã‖L2([0,T ],V )

≤ B5‖h‖X‖a− ã‖X .

Similarly as in (34) together with the Lipschitz continuity of F̃ in Proposition 2
(ĉa is Lipschitz in a) we obtain

I
(
h

(
d2

dk2
− d

dk

)
(ĉa − ĉã)

)
‖L2([0,T∗],V ′)

≤ B6‖h‖X‖ĉa − ĉã‖L2([0,T∗],V ) ≤ B6‖h‖X‖a− ã‖X

Now applying the main estimate as in (28) we �nd

‖w‖L2([0,T ],V ) ≤ B‖a− ã‖X‖h‖X .

By de�nition of the operator norm this establishes Lipschitz continuity of the
Frechet-derivative.

4.3 The Adjoint Operator

For convergence rate results as well as for the numerical implementation we
also have to calculate the adjoint of G′(a). The usual convergence theory for
nonlinear Tikhonov regularization [17] is formulated in Hilbert spaces, whereas
up to now we used the Banach space X (30) for the parameter space of the local
speed function. To apply the abovementioned regularization theory as well as
to �nd the adjoint operator G′(a) we have to use Hilbert spaces. The previous
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results (Proposition 2, Proposition 3 in Section 4) still hold if X is replaced by a
Hilbert space Hs with norm ‖.‖s which is embedded into X, for later purposes
we will also need that Hs is compactly embedded, i.e. a bounded sequence in
Hs has a strongly convergent subsequence in X:

‖a‖X ≤ C1‖a‖s ∀a ∈ Hs ∧ ‖an‖s ≤ C2 ⇒ ∃ank
ank

. convergent in X (36)

Our notation indicates that we will use Sobolev spaces Hs of some order s since
for those embedding theorems are available and their computation is well known
(e.g. using �nite elements or �nite di�erences).
So we now treat G as an operator from Hs → Y with Y = L2([0, T ] × L2(R))
and Hs embedded into X as in (36). G′(a) is continuous from Hs to Y , hence
an adjoint operator G′(a)∗ exists, mapping from Y → Hs. This linear operator
is de�ned by the identity

(G′(a)h, φ)L2[0,T ]×L2(R) = (h,G′(a)∗φ)Hs

for all h ∈ Hs and φ ∈ Y .
The computation of the adjoint is split into several steps: First we have to
consider the adjoint equation of (33). We start with arbitrary φ in L2[0, T ] ×
L2(R) and consider a (weak) solution of

−uT + L∗au = φ, u(T ∗, ·) = 0 (37)

where L∗a is the formal adjoint di�erential operator to La

L∗au = − ∂

∂k

((
r − η +

σ(k, T )2

2

)
u(k, t)

)
− ∂2

∂k2

(
σ(k, T )2

2
u(k, T )

)
−
(
∂2

∂k2
+

∂

∂k

)
(aI∗u).

I∗ is the adjoint integral operator of I in the L2-inner product. It is well-known
in the theory of integral equations (see e.g. [15, 26]), that I∗ has the same form
as I (a convolution operator) but with kernel ψ(y − k) instead of ψ(k − y).
L∗a is the formal adjoint to La, i.e. it follows by integration by parts that

(Lav, u)L2 = (v,L∗au)L2 ∀u, v ∈ V.

This immediately implies that the Gårding inequality (22) and continuity (23)
also hold for L∗a. Thus, using a change of the time variable s → T ∗ − T , (37)
can be rewritten as a standard parabolic initial value problem, for which the
existence and uniqueness of a solution in L2([0, T ∗], V ) holds.
With integration by parts with respect to the time-variable we get for any
h ∈ H2 and u a solution to (37)

(G′(a)h, φ)L2[0,T ]×L2(R) =
∫ T

0

∫
R
I
(
h

(
d2

dk2
ca −

d

dk
ca

))
u dkdt

=
∫ T

0

∫
R
h(k, t)

(
d2

dk2
ca −

d

dk
ca

)
I∗u =: (h, G̃′(a)∗φ)Hs,Hs′ .

G̃′(a)∗ is now the adjoint using the dual pairing of Hs and Hs′. For the adjoint
in Hs we have to compose it with the Riesz isomorphism Rs : Hs′ → Hs, which
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is a smoothing operator and for many simple cases involves solving a partial
di�erential equation (for instance if s = 1 the isomorphism involves solving the
Poisson equation). Altogether we get the adjoint G′(a)∗ by the mapping

φ→ Rs ◦
[(

d2

dk2
ca −

d

dk
ca

)
I∗u

]
, (38)

where u solves (37). This was the derivation of the adjoint for the case that the
observation operator O is the identity, i.e. when prices for all log strikes and
times are avaliable. If this is not the case, then the adjoint is given in a similar
way as in (38), but where u solves

−uT + L∗au = O∗φ, u(T ∗, ·) = 0

instead of (37). The L2-adjoint O∗ of the observation operator is the extension
operator of φ by 0 to the whole space R× [0, T ∗].
The computation of the adjoint is important for at least two reasons. Firstly, an
e�cient numerical method for computing a minimizer of the Tikhonov functional
requires the adjoint operator of the Frechet-derivative. The essence of the so-
called adjoint method (compare [14]) is that for computing a descent direction
of the Tikhonov functional we do not have to compute the full Frechet-derivative
or its adjoint, but only the application of this operator to a given element.
Secondly, the adjoint is also important in the theory of Tikhonov regularization,
because a su�cient condition for obtaining convergence rates - the so-called
source condition - is formulated via the adjoint operator. The range of the
adjoint determines in an essential way the degree of ill-posedness of the problem.
We will come back to this issue in the next section in the discussion of the
convergence rates result in Theorem 4.

5 Regularization

We now turn to the regularization of the inverse problem of identifying the local
speed function. For the problem described, there are at least two objectives to be
achieved: At �rst we want to calibrate the problem to data, i.e. the discrepancy
between the model and the data should be small. On the other hand, we want
to �nd a model which is robust, even if the data are noisy. For this reason
we phrased the problem as a parameter identi�cation problem, where we not
only try to make the discrepancy small, but try to �nd one local speed function
- in a stable way - which reproduces the data well. This shifts the focus of
convergence in the data space to convergence in the parameter space. If we
consider the identi�cation problem as solving equation (12) (or equivalently
(29)) in the space Hs such that (36) holds, it follows immediately that the
forward operator is compact and hence by a well-known result [16] the problem
is locally ill-posed in this space. As it is typical for ill-posed problems, a good
�t to the data does not necessarily imply that the computed parameters are
close to the �real� parameters. For that reason we have to use regularization.
With this tool we can compute a parameter in a stable way even in the presence
of errors in the data. In addition, we then have a convergence theory which
basically tells us that for small data noise the computed parameters will still
be close to the real parameters. Moreover, it is even possible to give bounds on
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the error between computed and real parameters, which is the essence of the
convergence rates result later. We make use of the well-known regularization
theory in Hilbert spaces, which can be found in detail in [16].
To state the result, we need some de�nitions and assumptions. First we assume
that the data are attainable, i.e. there is a real speed function a which creates
the exact data y via (12). In practice, exact data are usually not available,
instead what can be observed are noisy data yδ. The noise level δ is the distance
between the exact and the noisy data:

‖y − yδ‖Y ≤ δ, (39)

where y is in the range of the forward operator F . Using Tikhonov regularization
we compute a regularized solution aα,δ from the noisy data yδ by minimizing
the Tikhonov functional in (13):

aα,δ = argmina∈Hs

(
‖F (a)− yδ‖2Y + α‖a− a∗‖2s

)
. (40)

Here α > 0 is the so-called regularization parameter, and a∗ is an initial guess.
As norm ‖.‖Y we use the L2-norm on the observation set Ωdat. By applying
the theory of nonlinear Tikhonov regularization [17, 16] we obtain the result
that if the noise level δ goes to 0 and the regularization parameter is chosen
appropriately (see Theorem 3) then the computed solution converges as well.
Its limit is a so-called a∗-minimum norm solution, which reproduces the exact
data (i.e. (12) holds) and has minimal distance to a∗ under all other parameter
choices for which (12) holds. In mathematical terms, an a∗-minimum norm
solution (usually denoted by a†) is de�ned as

a† := argmina

{
‖a− a∗‖s

∣∣F (a) = y
}
. (41)

The notion of minimum norm solution is only relevant if the problem (12) does
not have a unique solution. If (12) is uniquely solvable, the minimum norm
solution is 'the' solution to the problem. For the de�nition of a† to make sense
we have to assume that the set of solutions to (12) with ‖a − a∗‖s < ∞ is
not empty. The initial guess a∗ has to be chosen such that this assumption
is satis�ed. If, for instance, the exact parameter is a perturbation of a known
constant a = a0 + h with a0 ∈ R and h ∈ Hs, then a∗ is conveniently chosen as
this constant a0.
Before stating the main results we have to include a continuity assumption of
the observation operator: We impose that O is continuous from L2([0, T ∗], V ) →
L2(Ωdat), where Ωdat are the set of points in k, T -space where option prices are
available, and

‖Of‖L2(Ωdat) ≤ B11‖f‖L2([0,T∗],V ). (42)

This holds, for instance if Ωdat, has positive Lebesgue measure in (k, T )-space.
At �rst, we have to prove that a minimizer of the Tikhonov functional exists.
This can be done with help of the analysis in Section 4. Since there we showed
several properties of G it is convenient to reformulate the minimization problem
(40) in an equivalent way with G. This operator was obtained from the forward
operator by subtracting the known function g0 in (29); in a similar manner we
can subtract it from the data to get a problem involving G. More precisely,
with the noisy data ŷδ := yδ −Og0 and exact data ŷ = y−Og and the notation

G̃ := OG, (43)
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(40) is equivalent to

argmina∈Hs‖G̃(a)− ŷδ‖2Y + α‖a− a∗‖2s. (44)

Moreover, (41) and (39) are equivalent to the corresponding de�nition involv-
ing ŷ, ŷδ, OG(a) instead of y, yδ, F (a). We can now show that the Tikhonov
functional has a minimizer:

Theorem 2. Under the assumptions (18)�(20) on σ, ψ, S, and if (36), (42)
hold, and a minimum norm solution a† with (41) exists, then for a �xed noise-
level δ, (cf. (39)), the functional (44) has a minimizer aα,δ.

Proof. By [17] and using formulation (44) we only have to show that the graph
of G̃ is weakly sequentially closed. However, since Hs is weakly sequentially
closed and compactly embedded into X by (36), a weakly convergent sequence
in Hs converges strongly in X. By Proposition 2 G is continuous from X to
L2([0, T ∗], V ), hence, with (42) G̃ is continuous from X to L2(Ωdat). In total G̃
is continuous and compact from Hs to L2(Ωdat). From this it follows that the
graph fo G̃ is weakly sequentially closed.

We can now state the main result on stability of the regularization and conver-
gence.

Theorem 3. Let the assumptions (18),(19), (20) on σ, ψ be satis�ed, (42) hold
and δ be as in (39). If the norm ‖.‖s in (40) is chosen such that s > 3

2 , then
the Tikhonov functional admits a global minimum aα,δ.
Moreover for �xed α this regularized solution depends stably on the data yδ in
the sense that if yδ is replaced by a sequence yk converging to yδ as k → ∞,
then the corresponding minimum aα,k in (40), has a convergent subsequence
with limit aα,δ.
The regularized solution aα,δ converges in the following sense: For a sequence
of data yδk

with noise levels δk → 0 and if αk is chosen such that αk → 0
and δ2k/αk → 0, then the sequence of regularized solutions aα,δk

corresponding
to these data has a convergent subsequence, and the limit of any convergent
subsequence is an a∗-minimum norm solution of (7). If the solution to (7) is
unique then aα,δk

itself converges.

Proof. With the results of Section 4, (39) and (42), the result follows from the
well-known theorems in [17, 16].

Theorem 3 summarizes the main results for Tikhonov regularization: Existence
of a minimizer, stability of the regularized solution and convergence if the noise-
level goes to 0 and the regularization parameter α is chosen as stated in the
theorem. It is well-known in regularization theory that for ill-posed problems
in order to obtain convergence, α cannot be chosen freely, but has to depend on
the noise level. This choice of α is called a parameter choice rule.
The previous theorem establishes convergence of the regularized solutions to a
minimum norm solution as α → 0 and δ → 0. The next question is, how fast
this convergence takes place. It is known that for ill-posed problems, without
additional conditions, the convergence speed can be arbitrarily slow. On the
other hand, if the minimum norm solution and the initial guess satisfy some
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abstract smoothness condition ("source condition"), convergence rates can be
derived.
From the analysis in the previous section, together with the theory of nonlinear
Tikhonov regularization [17, 16], we can conclude that the basic assumptions
for an application of Tikhonov regularization are satis�ed and that we get con-
vergence and also convergence rates under the following source condition:

Theorem 4. If in addition to the assumptions of Theorem 3 the conditions

∃w∈Y : a† − a∗ =
(
G̃′(a†)

)∗
w (45)

γ‖w‖ < 1 (46)

hold, where γ is the Lipschitz constant of G′, and α is chosen as α ∼ δ (as
δ → 0), then the regularized solution converges to the minimum norm solution
with rate

‖aα,δ − a†‖ ≤ O(
√
δ).

Note that we can use the equivalent formulation of Tikhonov regularization in
(45) instead of (40), which is why we used G in (45). For (40) the analogous
condition would involve F ′(a†)∗ instead of (G̃′(a†)∗.
We now give a detailed interpretation of the smallness condition (46) and the
source condition (45). The �rst one can be interpreted in a way that our initial
guess a∗ has to be su�ciently close to the exact solution. The latter, however, is
a stronger condition in the sense that we also have to know that the di�erence
between initial guess and exact solution have to be in the range of G̃′(a†)∗.
Since this is a smoother space than L2, this implies that the non-smooth part
of a† has to be known, in order to get convergence rates.
The necessity of a source condition for obtaining convergence rates is a conse-
quence of the ill-posedness of the problem. Note that equation (45) is a non-
trivial condition on a†− a∗ because the equation cannot simply be solved for w
by inverting G̃′(a†)∗; thus such a w may not exist. The source condition is also
very useful in interpreting the ill-posedness of the problem. The di�culty of the
problem can be classi�ed in degrees of ill-posedness according to the smoothing
property of G̃′(a†)∗, and hence how hard it is to full�ll condition (45). If the
range of G̃′(a†)∗ consists of n-times di�erentiable functions, then we have to
know the jumps in the nth derivative of the unknown parameter a† in order to
ful�ll (45). Now the higher the degree of smoothness of the range R(G̃′(a†)∗),
the harder it is to satisfy the source condition. This gives a measure of the
ill-posedness of the problem: If R(G̃′(a†)∗) is the Sobolev space Hn, then the
problem is as ill-posed as n-times di�erentiation.
We can take the source condition (45) and analyze the smoothing properties
of (G̃′(a†))∗ in more detail, to identify those factors that make the problem
ill-posed and to compare the local-Lévy identi�cation problem with others such
as the corresponding identi�cation problem for the Dupire model.
From the structure of the adjoint we can observe several parameters in�uencing
the ill-posedness. G̃(a)∗ maps φ to u, the solution of the adjoint equation with
right-hand side O∗φ. Then the integral operator I∗ is applied to u and �nally

I∗(u) is multiplied with
(

d2

dk2 ca − d
dk ca

)
.

If we assume for simplicity, that we have data on the whole space, i.e. O = Id,
we can analyze the smoothing properties of (G̃(a))∗ as follows:
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The step from φ→ u involves solving the adjoint equation, which is only mildly
smoothing. In fact there is almost a 1-1 correspondence of u and φ: For any
φ we have a solution u, and if ut, ux and uxx are in L2, then a φ exists that
satis�es the adjoint equation. Thus solving the adjoint equation is smoothing
in the sense that we gain one time-derivative and two space-derivatives. This
ill-posedness does not depend very much on the choice of ψ and a.
The main di�culty in satisfying the source condition comes from the integral

operator I and the multiplication with
(

d2

dk2 ca − d
dk ca

)
. If ψe is a k-times

di�erentiable kernel function, then the corresponding integral operator maps
into a space of k-times di�erentiable functions. Hence in order to satisfy a

source condition, (a∗−a†)
(

d2

dk2 ca − d
dk ca

)−1

has to be k-times di�erentiable as

well. In that case, we have to know the jumps in the (k−1)-th derivative of the
solution to get convergence rates.
As a result we can state that the smoother the kernel function ψ, the more ill-
posed the problem is. Note that for the corresponding identi�cation problem of
the volatility in the Dupire model, the adjoint has a similar structure [14], where
I is the identity operator, which is not smoothing at all. In this case the range
of the operator in (45) is mainly determined by the smoothness of the solution u
to the adjoint equation (37). For the local Lévy model, additionally a smoothing
integral operator acts on u, which makes (45) a more di�cult condition than
for the Dupire (or Black-Scholes) model. This shows that the local Lévy model
is (depending on ψe) much more ill-posed than the corresponding Black-Scholes
calibration model.
However, there is a second implication of the source condition, which comes

from the multiplication operator with multiplier
(

d2

dk2 ca − d
dk ca

)
. This quantity

is proportional to the formal density of the asset price at time t. To see this,

observe that
(

d2

dk2 ca − d
dk ca

)
= K2C

(a)
KK , where C(a) denotes the European call

prices with the local speed function a. Note that CKK(K,T ) = fST
(K) with

fST
denoting the density of ST .

If this density is strictly positive for all t and K, then we can divide by the den-
sity and the source condition is essentially a smoothness condition determined
by ψe. However, in degenerate cases (if σ = 0 for instance) it may happen that
the multiplier is 0 for some points (k, T ). In this case the source condition im-
plies that a† = a∗ in these regions. Consequently we have to know the solution
in this region (which is evident, since in regions with density 0, the value of a
has no in�uence on the call price ca, and hence cannot be reconstructed from
any data there). The assumption σ > 0 used in this paper avoids this problem.
Nevertheless, the problem of zero density should kept in mind for the study of
more general problems (in particular, pure jump processes are often considered
to be appealing models).
Furthermore the source condition gives a more precise quantitative interpreta-
tion: Wherever the density is very small, the initial guess has to be close to the

exact solution in order to guarantee that (a∗ − a†)
(

d2

dk2 ca − d
dk ca

)−1

is in the

range of I∗.
So we have identi�ed at least two major in�uence factors for the ill-posedness:
a small value of the density function and the smoothness of ψe.
Finally we note that if O is not the identity operator, i.e. the data are given
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only on a subset of R× [0, T ∗] the problem is also more di�cult, since the right-
hand side of the adjoint equation is only supported on the set of observation
values. As a consequence, we have less freedom of choice for w in (45). This
formally implies the natural result that less data make the calibration problem
more di�cult.

6 Numerical Illustration

We now turn to the numerical computations and results for the Tikhonov reg-
ularization of the identi�cation problem. To get a regularized solution we have
to compute the Tikhonov functional (13) and apply a minimization algorithm.
The main computational work in computing the forward operator F̃ in the func-
tional concerns the numerical solution of the integro-di�erential equation (4).
For this we have to discretize the domain R+ × [0, T ∗] and the governing PIDE
(4) and the involved Hilbert space norms.
For the computation we replaced the unbounded domain R+ × [0, T ∗] by a
bounded one, [0,K0] × [0, T ∗], where K0 was chosen to be K0 = 5S, S being
the spot price.
The computational domain is then discretized uniformly into nK and nT inter-
vals for the K- and T -direction, respectively.
The derivatives with respect to K in (4) are replaced by �nite di�erences, and
the integral is discretized by a midpoint rule. On the interval [0,K0] we used
the same Dirichlet boundary condition as in (6) and the initial condition (5).
The parameters in the equation σ0 and a0 are discretized on the same uniform
grid as the calls.
For the resulting discretized evolution equation of (4) we used a Crank-Nicholson
type scheme of the form

( 1
∆T I −

1
2A)Cn+1 = ( 1

∆T I + 1
2A)Cn +BCn,

where Cn is the vector of discretized call prices at time step n, ∆T is the
time step size, the matrix A represents the discretized versions of the terms
in equation (4) involving zeroth, �rst and second derivatives, while the matrix
B comes from the discretization of the integral operator. A standard Crank-
Nicholson scheme would also involve the matrix B on the left-hand side of the
equation, but we choose this modi�cation for e�ciency reasons: A is a sparse
matrix coming from the derivative terms, while B is a full matrix corresponding
to the integral operator. Hence, if B appears on the left hand side, each time
step would involve solving a linear equation for Cn+1 with a full matrix. In our
modi�cation we only need to solve a sparse matrix equation, which can be done
more e�ciently. Our modi�ed iteration can be seen as a mixture between a
Crank-Nicholson scheme and an explicit Euler scheme (for the terms involving
the integral operator). Of course, an implicit Euler scheme could be used as
well and this would be more stable, but again, a fully implicit scheme has the
drawback that one would have to invert a full system matrix due to the integral
operator term.
Assuming that the set of observation points Ωdat is discrete, the observation
operator O is computed by a piecewise linear interpolation of the discretized
solution to the observation points.
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Since we replace the in�nite domain R+ by a �nite one, we do not have the
problem that g0 is not in L2 in the discretized case and we do not have to
introduce the operator G̃ in (29). Thus we can minimize the functional (13). We
used the discretized L2-norm for the error term F (a)−y. For the regularization
norm ‖.‖s we have to keep in mind that the embedding condition (36) has to
hold. One possible choice for a norm is the discretized version of the H2(R+ ×
[0, T ∗]), which involves all second derivatives. For the numerical computations
we used a di�erent one - the tensor product norm H1[0,K0]⊗H1[0, T ∗]:

‖u‖2H1[0,K0]⊗H1[0,T∗] =
∫ T∗

0

(‖u(., T )‖2H1([0,K0])
+
(
d

dT
‖u(., T )‖H1([0,K0])

)2

dT.

Two reasons are responsible for this choice: First of all, this norm is weaker

than the H2-norm, as only mixed second order derivatives ∂2

∂K∂T u appear in
the highest order terms, hence the exact solution does not need to be in H2

but may have slightly less regularity. Secondly, a discretization of the tensor
product norm can be easily obtained by taking the Kronecker product of the
matrices corresponding to a discretization of the one-dimensionalH1-norm. The
embedding condition (36) for the tensor product norm follows immediately from
the one-dimensional Sobolev embedding theorem H1(I) → C(I) (I being an
interval).
With the described discretization we can numerically compute the Tikhonov
functional (13) for a given discretized speed function a. The minimization of
this functional was done by a Gauss-Newton method. In each step, this involves
the computation of the Frechet-derivative of F and its adjoint, as well as solving
a linear equation for the update anew − aold (cf. Section 4). The numerical
computation of the corresponding equations was done in the same way as for
the call price equation (4) and in a consistent way such that the discretization
of the derivative equals the derivative of the discretized operator. The linear
equation in the Gauss-Newton step was solved by a CG-method. For that
only matrix-vector operations are used so we do not have to compute the full
derivative matrix, but directional derivatives are su�cient, which helps reducing
the computational e�ort.
In order to verify the predicted convergence rates we performed some numerical
results using simulated data. At �rst, we consider the rates in Theorem 4, i.e.,
the case when a source condition (45) holds. For this we speci�ed the exact
solution

a†(K,T ) = exp(−2(K − 1)2) sin(K)(1 + 0.2T ),

computed the forward operator F (a†) and added some random noise to this
to get data with noise level δ. For this simulation the setup of the problem
parameters was as follows: We used a 50 × 50 discretization for the domain
[0,K0]× [0, T ∗] with T ∗ = 1. The volatility σ and η were chosen to be constant
1, the interest rate was r = 0.05. As observation set we used the discretization
points in the interval [0.6, 4]× [0.1, 1]. The double exponential tail for the Lévy
measure was chosen as in [6]

ψ(z) =

{
β exp(−(G+1)|z|)

G2+G z > 0
exp(−(M−1)z)

M2−M z ≥ 0
(β,G,M) = (

1
2
, 1, 2), (47)

which corresponds to the Kou model (see [23, 24] for details on this model).
Since in this case a† is known we constructed the initial guess a∗ such that (45)
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holds. With the a priori regularization parameter choice α = δ we computed
the error ‖aα,δ − a†‖ for di�erent choices of δ. The result is shown in Figure 1.

The predicted order of convergence rate ‖aα,δ − a†‖ ∼
√
δ is indicated by the

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Figure 1: Error versus noise level with source condition

straight line in the picture. It can be seen that the computed convergence rate
follows the theoretically predicted one.
Knowing the exact solution for this simulated example allowed an initial guess
for which the source condition is satis�ed. In practical applications such an
initial guess might not be available and a source condition of type (45) might
not hold. It is possible that a weaker source condition is full�lled (e.g. of Hölder
or logarithmic type [22]), in which case weaker convergence rates can be proven.
In many applications the type of source condition and the rates thus depend
on the smoothness of the exact solution a†. In the next example we tested how
convergence rates depend on the smoothness of the exact solution.
Note that now the source condition is not known, so the parameter choice α ∼ δ
cannot be used here (it might not give the optimal rate). We therefore rely
on an a posteriori parameter choice rule [16], which has the advantage that
the exact dependence of α on the noise level does not have to be known, but
the regularization parameter is de�ned implicitly. For the computations we
used the discrepancy principle, which can be described as follows: First, a
geometrically decaying sequence of regularization parameters αk is generated.
For each αk the corresponding Tikhonov regularized solution is computed and
the �rst parameter for which the residuum is of order of the noise level is chosen
as regularization parameter:

α := max{αk : ‖F (aαk,δ)− yδ‖ ≤ τδ},

where τ > 1 is a �xed parameter. A convergence proof of this rule for nonlinear
Tikhonov regularization can be found in [25, 37, 33].
In Figure 2 we show the error ‖aα,δ − a†‖ over the noise level δ for two di�erent
solutions a†: The �rst one is a smooth Gaussian function,

a†1(K,T ) = exp
(
− (K − 2.5)2

2

)
exp

(
− (T − 0.5)2

0.1

)
while the second one is chosen as the tensor product of two piece-wise constant
functions

a†2(K,T ) = pwconst1(K)pwconst2(T ),
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where pwconst1(K) is nonzero in the interval [1, 4], and constant 1 in the interval
[2, 3] with continuous linear interpolation in between. pwconst2(T ) is of similar

shape, nonzero in [0.2, 0.8] and constant 1 in [0.4, 0.6]. Both functions a†1 and

a†2 have a similar support but the �rst one is smooth while the second one is
not even continuously di�erentiable (although it is in the tensor product Hilbert
space H1[0,K0] ⊗ H1[0, T ∗]). The dashed line in Figure 2 corresponds to the

error for the non-smooth solution a†2 and the solid line to the smooth one a†1. It
can be seen that the convergence in the non-smooth case is slower than for the
smooth case. This indicates that amongst other factors the smoothness of the
solution in�uences the convergence rate.
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Figure 2: Rates for smooth and non-
smooth speed functions
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Figure 3: Rates for di�erent kernels

In a similar experiment we tested how convergence rates depend on the smooth-
ness of the double exponential kernel. As indicated in the discussion in Section 5,
a source condition of type (45) is more di�cult to ful�ll for a given solution if
the double exponential kernel is smoother. Thus, it is to be expected that if a
solution a† is kept �xed but the identi�cation problem is computed using dif-
ferent kernels, the convergence rate for the case of smooth kernels should be
slower. We choose three di�erent kernels: The �rst one was as in the previ-
ous cases the one-times weakly di�erentiable kernel (47), the second one was
a smooth Gaussian centered at 0 with variance σ =

√
5, the third one was a

narrow Gaussian with variance σ ∼ 0.15. Although the last kernel is smooth, in
a numerical sense it approximates a Dirac-Delta distribution and hence can be
considered a highly non-smooth kernel for the discretized problem. The results
are shown in Figure 3: The dashed line corresponds to the smooth Gaussian,
the dashed-dotted line to the delta-like kernel and the solid line to (47). The
results con�rm the prediction (see discussion at the end of Section 5) that the
rates are faster for non-smooth kernels - the delta-like kernel yields the fastest
rates, while the Gaussian with large variance result in the slowest ones.
It should be mentioned that other factors determine the convergence rates as
well, for instance we observed that it is harder to identify features of the speed
function which are located close to the boundary K0, where the call price has
little variation. This is also not surprising in view of the discussion of the source
condition in Section 5.
Finally we tested the calibration procedure on real data. For that purpose
we used the data given in [2] as well as the calibrated Merton jump model
of that paper. The jumps in that model are log-normally distributed, i.e.
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ν(dx, dt) = φ(x)dxdt with φ denoting the density function of the normal dis-
tribution with mean µ and variance γ2. The given data in [2] are bid and ask
prices of European calls having maturities form 0.08 to 10 years and strikes
between 0.5 and 2 (with S0 = 1). For the solution to the PIDEs we used the
scheme outlined in the beginning of this section and a 401× 201 discretization.
As "observed price" we used the arithmetic average between bid and ask price.
For the initial guess for the local speed function we employed the constant jump
intensity of the �tted model of [2], which is equal to 0.089. The remaining
�tted parameters are: σ = 0.1765, µ = −0.8898, γ = 0.4505, r = 0.059 and
η = 0.0114. While Andersen and Andreasen in [2] �tted the local volatility
leaving the jump process unchanged over time by optimizing the least-squares
problem with the constraint for the model prices to fall into the bid-ask spread,
we calibrate the local speed function, which only a�ects the jump term of the
process, by the developed regularization procedure. The bid-ask spread is inter-
preted as the noise level δ and set to the root of the average squared di�erence
between the midpoints of the bid and ask prices and the bid prices, which re-
sulted in δ = 0.0022. The �tted local speed function is plotted in Figure 4 in the
relevant region, where data were available (the local speed function was set to
0 elsewhere). The procedure terminated after 2 main Gauss-Newton iterations
and took 4 minutes on a 2.4 GHz Pentium 4 with 512 MB RAM.
It is quite obvious, that there is a sharp decrease in the local speed function
around time 1.5 and strike 1.5. This is due to the fact that in this region the
volatility σ = 0.1765 in the model su�ces to imply call prices as high as in the
data, and hence no jump term is needed to explain the option prices there.
The root of the mean squared error of the �t to the data was 0.0014, when the
algorithm terminated, while it was 0.0245 for the initial guess and hence the
introduction of the local speed function has considerably increased the �tting
quality. Note that the error is smaller than the noise level, which is in some
sense the best one can expect from a �tting procedure.

7 Conclusion and further research

We have investigated a procedure to robustly calibrate the local speed function
of a given Lévy model to available European option prices. It turned out that
the Tikhonov regularized problem is not only stably solvable, but one can also
prove convergence rates and verify them numerically. The numerical results
are quite satisfactory also in the real data case. The fact that the numerically
reconstructed local speed function is quite small or even zero in some regions
suggests further research on model selection in general. Another interesting open
problem is the case of a pure jump model without di�usion component. From
the viewpoint of calibration this situation is more delicate in both investigating
the forward operator and the regularization. Finally, in the present paper we
investigated the calibration of the local speed function when both the local
volatility and the Lévy measure are known. The suitability of a simultaneous
calibration of volatility, speed function and Lévy measure from market data will
be investigated in a future study.
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Figure 4: Local speed function for the Merton jump-di�usion model of [2]
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