Recent advances in microbial community analysis from machine learning of multiparametric flow cytometry data.
Détails
Télécharger: S095816692.pdf (1118.15 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_A9FCFB45172D
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Recent advances in microbial community analysis from machine learning of multiparametric flow cytometry data.
Périodique
Current opinion in biotechnology
ISSN
1879-0429 (Electronic)
ISSN-L
0958-1669
Statut éditorial
Publié
Date de publication
06/2022
Peer-reviewed
Oui
Volume
75
Pages
102688
Langue
anglais
Notes
Publication types: Journal Article ; Review ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
Dynamic analysis of microbial composition is crucial for understanding community functioning and detecting dysbiosis. Compositional information is mostly obtained through sequencing of taxonomic markers or whole meta-genomes, which may be productively complemented by real-time quantitative community multiparametric flow cytometry data (FCM). Patterns and clusters in FCM community data can be distinguished and compared by unsupervised machine learning. Alternatively, FCM data from preselected individual strain phenotypes can be used for supervised machine-training in order to differentiate similar cell types within communities. Both types of machine learning can quantitatively deconvolute community FCM data sets and rapidly analyse global changes in response to treatment. Procedures may further be optimized for recurrent microbiome samples to simultaneously quantify physiological and compositional states.
Mots-clé
Flow Cytometry/methods, Machine Learning, Microbiota
Pubmed
Open Access
Oui
Création de la notice
12/02/2022 14:50
Dernière modification de la notice
16/04/2024 6:21