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Dynamic analysis of microbial composition is crucial for

understanding community functioning and detecting dysbiosis.

Compositional information is mostly obtained through

sequencing of taxonomic markers or whole meta-genomes,

which may be productively complemented by real-time

quantitative community multiparametric flow cytometry data

(FCM). Patterns and clusters in FCM community data can be

distinguished and compared by unsupervised machine

learning. Alternatively, FCM data from preselected individual

strain phenotypes can be used for supervised machine-training

in order to differentiate similar cell types within communities.

Both types of machine learning can quantitatively deconvolute

community FCM data sets and rapidly analyse global changes

in response to treatment. Procedures may further be optimized

for recurrent microbiome samples to simultaneously quantify

physiological and compositional states.
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Introduction
The microbial communities that live within and around

us are typically species-rich and unevenly diverse; they

are unique for hosts and environments, yet dynamic,

evolving, and adapting [1–3]. Monitoring the composi-

tional structure of microbial communities is important for

understanding of their interactions with their host or the
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environment, and in response to changes thereof [4,5].

Microbial composition analysis mostly entails quantifying

abundances of key populations or taxa, ideally accompa-

nied with their physiological states and metabolic activi-

ties [6].

Current microbiome analysis is largely dominated by

‘omics’-methods, such as metagenomics (e.g. 16S rRNA

gene amplicon sequencing from community-isolated

DNA or whole community shotgun sequencing), meta-

transcriptomics and metaproteomics, and metabolo-

mics. These permit a direct inference of microbial taxa,

gene expression, proteins and metabolic reactions

within communities [7]. Particularly, both 16S rRNA

gene amplicon and deep shotgun sequencing have

become extremely popular for microbiome analysis

[8,9]. They have tremendously contributed to the

understanding of the extent of microbial diversity,

the differences and commonalities in species distribu-

tions among habitats, hosts and even individuals [10].

Although crucial, the methods have some important

drawbacks. Firstly, several studies have pointed out

the potential biases in interpreting microbiome struc-

ture and function from metagenomics alone [11,12], and

have suggested they should be complemented by meth-

ods providing cell mass and absolute microbial abun-

dances. Secondly, it is complicated to deduce cell

physiologies and growth stages from metagenomics

and—transcriptomics methods, yet both are important

for microbiome functional interpretations [13]. Finally,

most omics methods are not easily optimized to near-

real-time results. They require relatively long proces-

sing and analysis times (i.e. weeks to months), expen-

sive instruments or outsourcing, and expert bioinfor-

matics knowledge. Therefore, there is clearly

substantial room for alternative and complementary

methods in microbiome research.

As we elaborate on below, flow cytometry (FCM), in

particular combined with machine learning analysis of

multiparametric single cell data sets, may provide rapid,

quantitative, phenotypically and possibly even taxonom-

ically relevant information of microbiome samples. For

recurring samples, one can envision standardizing and

optimizing procedures to such an extent that
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2 Systems biology
comprehensive near-instant microbiome compositional

analysis would be possible, which would be extremely

useful for diagnostics and treatment of microbiome-

related disorders or biotechnology process optimization,

as has been suggested previously [14].

Flow cytometry and microbiome analysis

FCM is the current gold standard for single cell quantifi-

cation and allows rapid, sensitive and high throughput

analysis of microbial cells in suspension [15]. FCM has a

long history in the analysis of microbial cell cultures and

communities, with its advantages of absolute cell quanti-

fication, wide dynamic range (102–107 cells per ml), fast
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turnaround time, and simplicity with respect to method-

ology [16,17]. Most modern instruments use a variety of

light beams to hit each passing cell, and measure optical

diffraction (light scatter) as well as a range of emitted

spectral wavelengths or bandwidths (Figure 1a,b). There

is a wide range of well-studied fluorophores that can

target cellular biomarkers (e.g. SYBR Green I increasing

fluorescence emission upon complexing double-stranded

nucleic acids) [15,16,18]. Different cellular markers can

be detected simultaneously by different fluorophores,

within the limits of spectral overlap, compensation tech-

niques or by full spectral analysis. Five to seven fluor-

ophores can be combined unproblematically [19]. FCM
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Machine learning of flow cytometry community data Özel Duygan and van der Meer 3
instruments and methods are flexible [17], permitting

single or automized high-density sample throughput

and even semi-continuous measurements of automated,

auto-stained samples [20]. Some FCMs are equipped

with mass-coupled detectors (mass cytometers) to mea-

sure masses of passing particles, further widening the

potential to detect different biomarkers by, for example,

metal-carried antibodies [21]. Although this has so far

been applied mostly on eukaryotic cells, imaging cyt-

ometers can add further measurable parameters from the

cell images they take [22]. Important advantages of FCM

for the perspective of microbiome analysis are thus the

multiple detected morphological, cellular and/or physio-

logical features measured on a relatively large number of

cells in a community. Such large parametric data sets are

excellently suitable for machine-learned training and

interpretation (Figure 1b,c).

Machine-learned interpretation of
multiparametric FCM datasets
Machine learning is a vast domain of advanced compu-

tational and statistical methods with the purpose to

facilitate interpretation of big datasets in all fields,

including microbiology [23�]. Machine learning models

can help to represent complex data relationships, albeit

without necessarily showing underlying causality (see

also Section ‘Cytometric and taxonomic relatedness’)

[24]. A priori one would expect FCM community data

sets to be complex, consisting typically of 105 cell

events and multiple species, with each cell being char-

acterized by between 5–15 cytometric features

(Figure 1b). The data set is further expected to display

some level of (but a priori unknown) redundancy, with

cells from the same species measured multiple times

(Figure 1c). Broadly speaking, two types of machine

learning methods have been used to unravel microbial

FCM data, categorized as unsupervised and supervised

learning. Briefly, unsupervised learning algorithms help

to cluster similar data points in a k-dimensional dataset.

In supervised learning, a model is trained on a labeled

dataset (i.e. a list with class labels and their correspond-

ing input variables, like species and cytometric parameters)
and then produces a classifier. The classifier is a

complex non-linear mathematical formula predicting

the probability of given input variables to belong to

any of the defined output classes. Now how do these

machine learning approaches translate into multipara-

metric FCM community data analysis?

As an example, consider a microbial community as a set

of S strains with y physiological states in n relative

abundances (Sy,n). From pure culture studies with fluo-

rescently stained biomarkers (e.g. DNA, RNA, lipids),

it is known that coherent physiological states will pro-

duce FCM signals that are nearly normal (Gaussian)

distributed [25]. One would thus expect an FCM com-

munity data set to comprise a composite of all these (Sy,
www.sciencedirect.com 
n) individual phenotypic characters, centered on their

respective Gaussian means. The question is then

whether we can deconvolute any community multi-

parametric data set (n cells, each with k parameter

values, Figure 1b) back into the individual strains,

physiologies and abundances? Given that species are

not evenly distributed in communities, many of the

individual Gaussians may be difficult to detect, when

the population of a given species in a given physiologi-

cal state contained within the sample is too small (e.g.

Figure 1c). Some others may actually be overlapping

between species and physiological states, limiting their

proper discrimination [26��]. Cells within a community

may also display more phenotypic heterogeneity than

what is expected from pure cultures, leading to

diffuse ‘Gaussian’ signals [27–30]. The goal of machine

learning methods is thus to interpret this community

composition or ‘cytometric fingerprint’ as it has

been called [31]; the global makeup of the taxonomic

and physiological states of the cells within the

community.

Unsupervised learning of microbial FCM data

Unsupervised learning methods aim to reduce the

entirety of the cytometric fingerprint (i.e. the list of

all cells with their 5–15 FCM parameter values) into

defined and quantitated patterns (Figure 1c,d). This is

less intuitive than it seems because – as explained

above, the FCM data sets comprise multiple underlying

strain-dependent, phenotype-dependent, parameter-

dependent and density-dependent Gaussians, which

would require hyperdimensional comparisons. Finger-

printing therefore often first entails a definition of

detectable hyperdimensional clusters (Figure 1c), and

then, a comparison of those clusters, for instance, by the

numbers of cells they encompass [18,25,26��]
(Figure 1d). Since the exact number of clusters (from

the constituing strains and their physiologies) in most

samples is not a priori known, its determination remains

an approximation, and a wide variety of clustering

approaches exist [26��]. For more theoretical consider-

ations on clustering approaches, the interested reader is

referred to Refs. [32,33]. In order to simplify the clus-

tering analysis, the data can be split into a single or

multiple bivariate comparisons (each consisting of, for

example, two measured FCM parameters) [31]. Bivari-

ate data are subsampled  to the same community size,

then manually (i.e. gated) [34], arbitrarily (i.e. discretiz-

ing the 2D-area in bins, or representing bivariate cell

densities as grey-scaled images with pixel resolution as

bins) [35] or automatically clustered (i.e. detecting real

Gaussian density distributions) [25]. Once the clusters

have been identified, the numbers or density of cells

within them are quantified (Figure 1d). Subsequently,

the resulting list of categories (i.e. bins or clusters) with

their respective cell abundances can be compared across

samples, for example, by calculating sample distances
Current Opinion in Biotechnology 2022, 75:102688



4 Systems biology
using classical diversity matrices, based on the defined

cluster categories [26��].

To gain better multivariate comparative power, recent

approaches cluster the FCM data directly in hyperdi-

mensional space, for instance, by Gaussian mixture

models (PhenoGMM [36�]) or hyperdimensional bins

[37], which considerably improves their accuracy. Other

approaches use neural network competitive training and

mapping to self-organize data clusters [19,38]. The clus-

ter definitions obtained from cytometric fingerprinting

can themselves be used for supervised training to better

predict recurrent community ‘types’ or changes

(Figure 1e) [26��,39,40�]. The limitation of the unsuper-

vised clustering methods on FCM data is that it is not a
priori possible to understand what identified clusters

consist of, nor to know in advance the amount of clusters

to expect. As all clustering methods rely on some under-

lying estimation of data clusters (e.g. equal cluster sizes

or hyperdimensional space separation) [32,33], this adds

a black-box aspect to unsupervised clustering and a

sense of non-causality (see Section ‘Cytometric and

taxonomic relatedness’ below).

Supervised learning of microbial FCM data

Although the diversity of the microbial world as a whole

may be endless, the diversity in any microbiome sample

clearly is not, and 95% of sampled cells in microbiomes

typically constitute anywhere between 50–100 geno-

types, depending on sample size [41,42]. Conceivably,

therefore, microbiome samples may be characterized

from the phenotypes of their individual constituting

strains. This is the concept behind supervised learning

of microbial FCM data that aims to learn from training

on known categories (Figure 2). First, individual micro-

biome species are grown as axenic pure cultures, for

instance, under conditions that represent the micro-

biome’s natural state (Figure 2a). The cultures are

stained and individually analyzed by FCM in order to

detect the means and variations of each of the measured

FCM parameters (Figure 2b). In case the culture dis-

plays multiple physiological states, these may be identi-

fied from separate subpopulation Gaussians in the FCM

data (see also Figure 2b,c). The FCM parameter values

of each distinct strain and physiological state or apparent

subpopulations, each with the same amount of cells, now

build the data sets that the supervised learning algorithm

will train on. The algorithm trains, validates and tests

how it can best differentiate all the provided strains,

subpopulations and states (the output classes)
(Figure 2c), and builds a classifier. Next, the classifier

function can be deployed to analyze unseen FCM data

from the same microbiome (Figure 2d) that contains the

strains used for training (Figure 2e). The output is a

prediction of the probability for every cell in the sample

to fall into each of the trained classes (Figure 2f). The

class attribution list is then used as the basis for diversity
Current Opinion in Biotechnology 2022, 75:102688 
measures (Figure 2g) or dynamic analysis of cell type

abundances (Figure 2h). The classifier function can also

be used to categorize cells from unknown microbiomes

(for which the same set of FCM parameters has been

measured as was used for training). But in that case it is

more difficult to interpret the output class attribution,

because the probabilities of cell to class assignment may

be lower as a result of dissimilarities to the used strain

standards (Figure 2f).

So far, few studies have attempted supervised learning to

classify individual cells in FCM data; however, the

results are promising, because they attempt to link a

causality back to the community sample data [43–

45,46��,47]. A pioneering study with marine algae prof-

ited from their autofluorescence properties and larger

cell sizes than bacteria to train an artificial neural net-

work and discriminate 72 different taxa at around 80%

accuracy [43]. Another earlier study with four bacterial

strains found 68–99% successful recognition with a sup-

port vector machine classifier based on five discrete light

scattering properties [48]. Three recent studies focused

on differentiating (mostly) bacterial communities, by

using classifiers built on pure culture FCM data

[45,46��,47]. Rubbens et al. [47], deployed basic FCM

scatter parameters plus a single general nucleic-acid

stain, to test how well in silico mixtures of FCM cell

data were differentiated as a function of the number of

training sets. Their linear discriminatory analysis (LDA)

and random-forest decision trees showed that any two

strains randomly picked from all the data sets could be

relatively well discriminated (80% correct). However,

the accuracy decreased to around an average of 40–50%

when all strain data sets (n = 20) were trained simulta-

neously, with random-forest giving overall better accu-

racy than LDA. Later re-analysis of the same data with a

new distance calculation improved the discrimination of

cell data by a few percent [45]. In our own work [46��,49],
we trained an artificial neural network model on a set of

32 standards (consisting of 14 bacterial isolates, some of

which with two or more subpopulations and physiologi-

cal conditions, one yeast, and eight fluorescent bead

standards) with 7 FCM parameters including a single

nucleic-acid staining dye. Standards were on average

well differentiated (recall of 80%), albeit with consider-

able variation (recalls of between 27.3–99.8%) [46��].
Some of the poorer differentiation seemed the result

of taxonomic similarity between the isolates chosen as

standards, but not in all cases, and this will require

further investigation. Bacterial cells from pure culture

spiked into freshwater communities were recognized by

the classifier with accuracies of between 56–80% and

high probabilities (average >85% on individually

assigned cells) [46��]. Importantly, that study also

showed that different cell physiologies can be correctly

recognized (>80%), even within background of a diverse

microbial community. In addition, even unknown
www.sciencedirect.com



Machine learning of flow cytometry community data Özel Duygan and van der Meer 5
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Outline of a supervised machine learning approach for interpretation of flow cytometry community data. Individual pure cultures of taxa occurring

in the sample (a) are analysed separately by multibiomarker flow cytometry (b), cleaned to define coherent main populations (c), then combined

and used for training, testing and validation of supervised input-output class assignments. When satisfactory classifiers are obtained, these are

then deployed to deconvolute similarly stained (d) and FCM-passed community samples (e) into corresponding output classes with the highest

probabilities (f). The corresponding lists of cells-per-class attribution are normalized and compared among samples to analyse community

diversity (g) or attribute dynamic changes (h) to output-class subpopulations (‘cell types’) under influence of treatment or condition. Example in (h)

modified from Ref. [50] Figure 5C. Figure panels inspired from Ref. [46��] Figure 1.
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6 Systems biology
communities could be meaningfully analyzed with a

single classifier based on these 32 standards [50,51�].
Collectively, these studies showed promising results for

supervised learning-based cell type recognition, even

within diverse communities. As this is a rather uncharted

territory, the molecular mechanisms of the observed

successes and the reasons for underlying pitfalls will

need to be investigated further.

Cytometric and taxonomic relatedness
Overall, several studies have now demonstrated that

machine-learning applications can be extremely valuable

for FCM microbial community analysis, in order to help

recognize biologically and ecologically meaningful pat-

terns and clusters, or even distinguish and quantify

occurrences of specific cell types by comparison to pre-

defined standards. In this manner, cytometric fingerprints

have been used to detect ecologically relevant commu-

nity shifts in process-engineered communities [39,52], to

find strain to strain variation [20], to detect different

physiological states [53,54], to measure changes in murine

fecal microbiota depending on disease-state [42], to diag-

nose Crohn’s disease from human stool samples [55�], or

to detect community changes occurring in contaminated

sites [56]. Flow cytometry community analysis has further

been deployed to study stability and resilience [57],

neutral mechanisms and niche differentiation [58��],
and nestedness of subcommunity diversity in continuous

reactors seeded with wastewater microbiomes [59]. Com-

bined clustering and supervised learning enabled to

detect community changes in shrimp-aquaculture point-

ing to disproportionate taxa [40�], and link abundance

changes in identified cell-types in freshwater communi-

ties to fragrance biodegradation [51�] or to antibiotic

contamination [50]. To some extent, both unsupervised

and supervised methods are converging. Cell sorting was

used to isolate identified (unsupervised) clusters in micro-

bial community FCM data and identify their composition

by 16S rRNA gene amplicon sequencing [42]. This

showed that they are not monospecies, but enriched

for one or a few strains. The same strains also appeared

in multiple clusters, probably due to their different phys-

iological and phenotypic states. A very recent study

showed how identified cluster taxonomies may be used

for supervised learning of the FCM data, to more reliably

predict occurrences and constellations of particular taxa

within communities as a consequence of process technol-

ogy [40�]. This could be useful, for instance, when specific

taxa point to microbiome dysbiosis. The opposite has also

been tried: applying classifiers trained in supervised

learning on pure culture standards to interpret changes

in microbial communities with unknown species compo-

sition. This procedure was also quite effective in detect-

ing community shifts and responses to xenobiotic com-

pound input, which were highly correlated to 16S rRNA

gene amplicon community sequencing analysis [46��,50].
Current Opinion in Biotechnology 2022, 75:102688 
Both supervised and unsupervised machine learning

methods thus detect relevant community changes, eco-

logical principles and cell-type occurrences in FCM com-

munity data. Their application, however, leads to the

more general question of how we as microbiologists can

deal with accuracies and probabilities? If the phenotype

of a cell (as characterized by k FCM parameters) is 95%

similar to that of a predefined standard, we may have no

difficulty to accept that this truly is the same phenotype,

but how do we interpret a classification of 50% or 80%?

Would this still be the same genotype but seen under

different physiological conditions, or would this cell

belong to a genotype from a different genus or family?

Theoretically, only a small dozen of different measured

cellular parameters in FCM is sufficient to cover even

community samples with high phenotypic richness (e.g.

1000 species and states). For example, measuring 7 inde-

pendent cell parameters, each with at least 5 different

mean values can already create a variation of 57 = 78

125 combinations, arguably sufficient to capture the rich-

ness in most microbiomes. However, how well can strain

differences be captured? In extension of this, how do we

interpret and compare global clustering patterns across

different unknown microbiome samples [39]? How do we

interpret technical FCM ‘gates’ [59] in terms of taxon-

omy? These questions arise but we currently don’t have

enough information to answer them properly. De facto,
sequencing methods face the same issue; however, there

is adequate experience and technical know-how to under-

stand what a 99.99% probability in base-calling means,

and to interpret 95% identity of the 16S rRNA gene.

Therefore, it may be only a matter of time and more basic

comprehension before we gain such confidence with

FCM computational methods.

Conclusions
Microbial community analysis is dominated by metage-

nomics, proteomics and metabolomics, which are robust

and accurate, yet complicated, time-consuming, and lack-

ing absolute microbial cell quantification. FCM has been

instrumental in rapid cell quantification and simultaneous

recording of suitable cell biomarkers, which can be fruit-

fully interpreted by unsupervised or supervised methods,

as many studies have now attested. The advantage by

FCM is that the global sample profile is correlated with

the taxonomic composition of the community sample but

also to the cells’ physiological states. This quantitative,

taxonomic and physiological profiling offered by FCM

and machine learning could present an important

advancement in microbial community diagnostics [14].

However, we still need to gain more confidence to link

both ‘omics’ and FCM approaches and find causalities for

the observed strain physiologies in the community sam-

ples. This may be accomplished by analyzing more and

different microbiome samples with both FCM and

sequence-based approaches, and further by choosing

other or more biomarkers that can link omics-type data
www.sciencedirect.com
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to cell physiological states. We can improve sensitivity

and specificity of the methods by better understanding

the variation in FCM signals originating from different

growth conditions (e.g. in axenic cultures) as well as of

sorting cells from community samples. This would then

also help us to understand if any microbial community can

be reasonably analyzed with a set of ‘universal’ pre-

defined cell standards or pre-established clusters, or if

specific and unique classifiers and clusters need to be

build for each and every new microbiome or dataset. A

comprehensive understanding of the probability assign-

ment of cells to similar pre-defined cell type classes can

particularly expand the field of supervised machine learn-

ing applications on FCM data. Many packages for

machine learning tools on FCM are now available, even

for non-expert users and with detailed explanations (e.g.

Ref. [26��]). This will help to acquire more user experi-

ence, and improve data analysis to make appropriate

causal inferences on the occurrences of microbial popula-

tions of interest and cell physiologies as well as commu-

nity composition and functioning.
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57. Liu Z, Cichocki N, Bonk F, Günther S, Schattenberg F, Harms H,
Centler F, Müller S: Ecological stability properties of microbial
communities assessed by flow cytometry. mSphere 2018, 3.

58.
��
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