On Parisian ruin over a finite-time horizon
Détails
Télécharger: BIB_9A3063B09DBE.P001.pdf (452.90 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_9A3063B09DBE
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
On Parisian ruin over a finite-time horizon
Périodique
Science China Mathematics
ISSN
1674-7283
Statut éditorial
Publié
Date de publication
03/2016
Peer-reviewed
Oui
Volume
59
Numéro
3
Pages
557-572
Langue
anglais
Résumé
For a risk process R (u) (t) = u + ct - X(t), t a parts per thousand yen 0, where u a parts per thousand yen 0 is the initial capital, c > 0 is the premium rate and X(t), t a parts per thousand yen 0 is an aggregate claim process, we investigate the probability of the Parisian ruin
P-S(u, T-u) = P{inf(t is an element of[0,S])sup(s is an element of[t,t+Tu]) R-u(s) < 0}, S,T-u > 0.
For X being a general Gaussian process we derive approximations of PS(u, T (u) ) as u -> a. As a by-product, we obtain the tail asymptotic behaviour of the infimum of a standard Brownian motion with drift over a finite-time interval.
P-S(u, T-u) = P{inf(t is an element of[0,S])sup(s is an element of[t,t+Tu]) R-u(s) < 0}, S,T-u > 0.
For X being a general Gaussian process we derive approximations of PS(u, T (u) ) as u -> a. As a by-product, we obtain the tail asymptotic behaviour of the infimum of a standard Brownian motion with drift over a finite-time interval.
Mots-clé
Parisian ruin, Gaussian process, Levy process, fractional Brownian motion, infimum of Brownian motion, generalized Pickands constant, generalized Piterbarg constant
Web of science
Création de la notice
29/04/2015 21:24
Dernière modification de la notice
20/08/2019 15:01