Motion compensated whole-heart coronary cardiovascular magnetic resonance angiography using focused navigation (fNAV).
Détails
Télécharger: 33775246_BIB_93EFCBF397D1.pdf (4921.76 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_93EFCBF397D1
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Motion compensated whole-heart coronary cardiovascular magnetic resonance angiography using focused navigation (fNAV).
Périodique
Journal of cardiovascular magnetic resonance
ISSN
1532-429X (Electronic)
ISSN-L
1097-6647
Statut éditorial
Publié
Date de publication
29/03/2021
Peer-reviewed
Oui
Volume
23
Numéro
1
Pages
33
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Publication Status: epublish
Résumé
Radial self-navigated (RSN) whole-heart coronary cardiovascular magnetic resonance angiography (CCMRA) is a free-breathing technique that estimates and corrects for respiratory motion. However, RSN has been limited to a 1D rigid correction which is often insufficient for patients with complex respiratory patterns. The goal of this work is therefore to improve the robustness and quality of 3D radial CCMRA by incorporating both 3D motion information and nonrigid intra-acquisition correction of the data into a framework called focused navigation (fNAV).
We applied fNAV to 500 data sets from a numerical simulation, 22 healthy subjects, and 549 cardiac patients. In each of these cohorts we compared fNAV to RSN and respiratory resolved extradimensional golden-angle radial sparse parallel (XD-GRASP) reconstructions of the same data. Reconstruction times for each method were recorded. Motion estimate accuracy was measured as the correlation between fNAV and ground truth for simulations, and fNAV and image registration for in vivo data. Percent vessel sharpness was measured in all simulated data sets and healthy subjects, and a subset of patients. Finally, subjective image quality analysis was performed by a blinded expert reviewer who chose the best image for each in vivo data set and scored on a Likert scale 0-4 in a subset of patients by two reviewers in consensus.
The reconstruction time for fNAV images was significantly higher than RSN (6.1 ± 2.1 min vs 1.4 ± 0.3, min, p < 0.025) but significantly lower than XD-GRASP (25.6 ± 7.1, min, p < 0.025). Overall, there is high correlation between the fNAV and reference displacement estimates across all data sets (0.73 ± 0.29). For simulated data, healthy subjects, and patients, fNAV lead to significantly sharper coronary arteries than all other reconstruction methods (p < 0.01). Finally, in a blinded evaluation by an expert reviewer fNAV was chosen as the best image in 444 out of 571 data sets (78%; p < 0.001) and consensus grades of fNAV images (2.6 ± 0.6) were significantly higher (p < 0.05) than uncorrected (1.7 ± 0.7), RSN (1.9 ± 0.6), and XD-GRASP (1.8 ± 0.8).
fNAV is a promising technique for improving the quality of RSN free-breathing 3D whole-heart CCMRA. This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well as XD-GRASP reconstructions. Further study of the diagnostic impact of this technique is therefore warranted to evaluate its full clinical utility.
We applied fNAV to 500 data sets from a numerical simulation, 22 healthy subjects, and 549 cardiac patients. In each of these cohorts we compared fNAV to RSN and respiratory resolved extradimensional golden-angle radial sparse parallel (XD-GRASP) reconstructions of the same data. Reconstruction times for each method were recorded. Motion estimate accuracy was measured as the correlation between fNAV and ground truth for simulations, and fNAV and image registration for in vivo data. Percent vessel sharpness was measured in all simulated data sets and healthy subjects, and a subset of patients. Finally, subjective image quality analysis was performed by a blinded expert reviewer who chose the best image for each in vivo data set and scored on a Likert scale 0-4 in a subset of patients by two reviewers in consensus.
The reconstruction time for fNAV images was significantly higher than RSN (6.1 ± 2.1 min vs 1.4 ± 0.3, min, p < 0.025) but significantly lower than XD-GRASP (25.6 ± 7.1, min, p < 0.025). Overall, there is high correlation between the fNAV and reference displacement estimates across all data sets (0.73 ± 0.29). For simulated data, healthy subjects, and patients, fNAV lead to significantly sharper coronary arteries than all other reconstruction methods (p < 0.01). Finally, in a blinded evaluation by an expert reviewer fNAV was chosen as the best image in 444 out of 571 data sets (78%; p < 0.001) and consensus grades of fNAV images (2.6 ± 0.6) were significantly higher (p < 0.05) than uncorrected (1.7 ± 0.7), RSN (1.9 ± 0.6), and XD-GRASP (1.8 ± 0.8).
fNAV is a promising technique for improving the quality of RSN free-breathing 3D whole-heart CCMRA. This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well as XD-GRASP reconstructions. Further study of the diagnostic impact of this technique is therefore warranted to evaluate its full clinical utility.
Mots-clé
Coronary magnetic resonance angiography, Free-breathing, Motion correction, Whole heart
Pubmed
Web of science
Open Access
Oui
Création de la notice
02/04/2021 14:54
Dernière modification de la notice
23/01/2024 8:30