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Abstract 

Background:  Radial self-navigated (RSN) whole-heart coronary cardiovascular magnetic resonance angiography 
(CCMRA) is a free-breathing technique that estimates and corrects for respiratory motion. However, RSN has been 
limited to a 1D rigid correction which is often insufficient for patients with complex respiratory patterns. The goal of 
this work is therefore to improve the robustness and quality of 3D radial CCMRA by incorporating both 3D motion 
information and nonrigid intra-acquisition correction of the data into a framework called focused navigation (fNAV).

Methods:  We applied fNAV to 500 data sets from a numerical simulation, 22 healthy subjects, and 549 cardiac 
patients. In each of these cohorts we compared fNAV to RSN and respiratory resolved extradimensional golden-angle 
radial sparse parallel (XD-GRASP) reconstructions of the same data. Reconstruction times for each method were 
recorded. Motion estimate accuracy was measured as the correlation between fNAV and ground truth for simulations, 
and fNAV and image registration for in vivo data. Percent vessel sharpness was measured in all simulated data sets and 
healthy subjects, and a subset of patients. Finally, subjective image quality analysis was performed by a blinded expert 
reviewer who chose the best image for each in vivo data set and scored on a Likert scale 0–4 in a subset of patients 
by two reviewers in consensus.

Results:  The reconstruction time for fNAV images was significantly higher than RSN (6.1 ± 2.1 min vs 1.4 ± 0.3, min, 
p < 0.025) but significantly lower than XD-GRASP (25.6 ± 7.1, min, p < 0.025). Overall, there is high correlation between 
the fNAV and reference displacement estimates across all data sets (0.73 ± 0.29). For simulated data, healthy subjects, 
and patients, fNAV lead to significantly sharper coronary arteries than all other reconstruction methods (p < 0.01). 
Finally, in a blinded evaluation by an expert reviewer fNAV was chosen as the best image in 444 out of 571 data sets 
(78%; p < 0.001) and consensus grades of fNAV images (2.6 ± 0.6) were significantly higher (p < 0.05) than uncorrected 
(1.7 ± 0.7), RSN (1.9 ± 0.6), and XD-GRASP (1.8 ± 0.8).

Conclusion:  fNAV is a promising technique for improving the quality of RSN free-breathing 3D whole-heart CCMRA. 
This novel approach to respiratory self-navigation can derive 3D nonrigid motion estimations from an acquired 1D 
signal yielding statistically significant improvement in image sharpness relative to 1D translational correction as well 
as XD-GRASP reconstructions. Further study of the diagnostic impact of this technique is therefore warranted to 
evaluate its full clinical utility.
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Background
Whole-heart coronary cardiovascular magnetic reso-
nance angiography (CCMRA) is a non-invasive alter-
native to X-ray coronary angiography, providing high 
resolution assessment of complex cardiac structures 
without exposure to ionizing radiation [1, 2]. In con-
ventional CCMRA, electrocardiogram (ECG) triggering 
is used to limit data collection to mid-diastole, effec-
tively “freezing” cardiac motion [3]. Additionally, a one 
dimensional (1D) navigator echo is typically prescribed 
over the dome of the liver to monitor the primary 
direction of respiratory motion [4, 5] and further limit 
data collection to a small acceptance window manu-
ally defined at end-expiration. Unfortunately, prospec-
tive gating is often impeded by physiological variability, 
resulting in inefficient and unpredictable scan times 
which has led to several proposed strategies for free-
breathing CCMRA.

Among the alternatives to conventional prospective 
respiratory motion tracking and data rejection is radial 
self-navigated (RSN) whole-heart CCMRA [6]. In RSN 
CCMRA, three-dimensional (3D) radial k-space data 
are acquired throughout the entire respiratory cycle 
and a readout orientated along the superior-inferior 
(SI) direction is repeated at the beginning of each radial 
interleave. In this way, the movement of the heart due 
to respiration can be quantified and corrected for in a 
patient-specific manner by measuring the relative cor-
relation between Fourier transformed superior-infe-
rior (SI) readouts over a region of interest containing 
the blood pool. RSN CCMRA, using a  spiral phyllo-
taxis distribution of the radial readouts [7, 8], has been 
shown to provide high-quality images with isotropic 
resolution in patient studies [9–11] and improved scan-
ning efficiency relative to conventional prospectively 
navigated Cartesian CCMRA [12].

Still, the existing approach for RSN is limited to 
respiratory motion quantification in one-dimension 
(1D) along the SI direction which is often insufficient 
for patients with significant respiratory motion along 
the anterior–posterior (AP) or left–right (LR) direc-
tions. Furthermore, subsequent rigid correction of the 
k-space data can not account for the non-linear behav-
ior of respiratory motion. As a result, an alternative 
reconstruction of 3D radial CMRA data was proposed 
wherein a respiratory signal is derived from repeated 
SI readouts, the k-space data are sorted in to multi-
ple respiratory states and reconstructed as respiratory 
resolved images using eXtra-Dimensional Golden-angle 

RAdial Sparse Parallel (XD-GRASP) CMR [13, 14]. 
While it has been shown that XD-GRASP provides 
sharper images than the 1D correction scheme, this 
approach may be adversely affected by residual uncor-
rected intra-bin motion, overregularization, and long 
computation times [15].

The goal of this work is therefore to improve the 
robustness and quality of respiratory self-navigated 3D 
radial CCMRA by incorporating both 3D motion infor-
mation and nonrigid intra-acquisition correction of the 
data. To do this, we propose a novel framework hereafter 
referred to as focused navigation (fNAV). Our approach 
integrates the following three features: (i) a 3D radial 
CCMRA acquisition with periodically repeated SI read-
outs, (ii) an autofocusing-based algorithm [16–20] that 
converts a unitless 1D respiratory signal derived from 
SI readouts into displacement fields along all three spa-
tial dimensions with physical units, and (iii) an iterative 
reconstruction that optimizes both local image sharp-
ness and smoothness in the displacement fields, resulting 
in a final 3D image that is regionally corrected for intra-
acquisition respiratory motion.

To evaluate the fNAV framework, we present a com-
prehensive numerical simulation that provides ground 
truth references for displacement field estimates and 
image reconstructions. We then demonstrate the use of 
fNAV in healthy subjects and in a large cohort of cardiac 
patients. Finally, we test the hypothesis that 3D nonrigid 
respiratory motion correction using fNAV improves 
coronary vessel sharpness relative to previously reported 
methods for 1D corrected RSN [8] and respiratory 
resolved XD-GRASP reconstructions of the same data 
sets [13, 14].

Methods
Respiratory signal extraction
The fNAV framework is applied to a previously described 
prototype respiratory self-navigated ECG-triggered 3D 
balanced stead state free precession (bSSFP) sequence 
with spiral phyllotaxis radial sampling, T2-preperation, 
spatial pre-saturation, and fat saturation pulses [7–9]. 
At the beginning of each radial interleave, a readout ori-
entated along the SI direction is used for self-navigation 
(Fig. 1a). To extract a respiratory signal (Fig. 1b), princi-
pal component analysis is applied to a matrix of SI pro-
jections (Fourier transform of each SI readout) from each 
receiver coil. The strongest principal component within 
the expected respiratory frequency range is chosen as the 
respiratory signal [14, 21].

Keywords:  Coronary magnetic resonance angiography, Motion correction, Whole heart, Free-breathing
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Fig. 1  Schematic overview of the focused navigation framework
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Focused navigation
It is well established that SI-derived respiratory signals 
[6, 8] are proportional to bulk motion within the sensi-
tivity range of the receiver coils or the imaging volume 
for non-selective and selective excitations respectively. 
However, such signals are unitless and therefore require 
a patient-specific calibration or iterative algorithm to 
measure physical displacement [8, 22]. The proposed 
fNAV framework (Fig. 1c) posits that patient-specific 3D 
displacement can be approximated by a normalized SI-
derived respiratory signal S(t) measured at time points 
(t) multiplied with fNAV coefficients A(r) = [Ax(r), Ay(r), 
Az(r)] that describe the millimetric amplitude of respira-
tory motion for a given spatial location r = [x, y, z]. Using, 
these coefficients, an image (Ir) can be reconstructed with 
translational motion correction as follows:

where (K) is the acquired 3D radial k-space data with 
coordinates k(t) = [kx(t), ky(t) kz(t)], and (F) is the non-
uniform Fourier transform. It is important to note that 
by correcting k-space with Eq. 1 the resulting image will 
be sharper in regions where A(r) reflects the underlying 
motion state (i.e. heart moving due to respiration) but 
become blurrier where it does not (i.e. static tissue). To 
address this, we reconstruct fNAV images (I) using local-
ized linear translations [16]:

For each spatial location, a motion corrected image Ir is 
reconstructed using Eq.  1 and the corresponding inten-
sity value is added to the fNAV image using a mask (Ur) 
which contains zeros everywhere except for the selected 
spatial location. In this way, every voxel in the result-
ing fNAV image is regionally corrected for respiratory 
motion. Similarly, we reconstruct fNAV displacement 
fields (D) as follows:

where each spatial location in D contains the correspond-
ing fNAV coefficient.

To implement Eqs.  1–3, reconstruct fNAV images, 
and reconstruct fNAV displacement fields, we must 
estimate fNAV coefficients for every sampled spatial 
location. To do this in a computationally efficient man-
ner, we propose a three-step approach. First, we esti-
mate fNAV coefficients A(∼r) where ∼r  specifies a small 
region-of-interest containing the heart. Second, we 
use our estimate of A(∼r) to constrain solutions for the 
remaining fNAV coefficients. Third, we iteratively refine 

(1)Ir = FK(t)ei2πk(t)•A(r)•S(t)

(2)I =
∑

r

UrIr.

(3)D =
∑

r

UrA(r)

all of our fNAV coefficients by enforcing smooth transi-
tions in the corresponding fNAV displacement fields.

Estimating displacement of the heart
Beginning with an initial estimate A(∼r) = [0,0,0], an 
intermediate image ( 

∼

I ) is reconstructed using Eq.  1, 
and an image quality metric is used to iteratively 
improve the estimate for A(∼r) (Fig.  1c). This approach 
is well-known as autofocusing [23–26]. For the fNAV 
framework we use the previously validated metric of 
localized image gradient entropy H:

where (b) defines the main lobe width of a separable low 
pass Hanning filter centered around a given spatial loca-
tion, (p) is the normalized voxel intensity from the gradi-
ent (g) of the intermediate image, and ∇ is approximated 
by 1D finite differences [16, 17, 19, 26]. The value of A(∼r) 
that minimizes H is solved using a steepest descent algo-
rithm where the gradient of H as a function of A(∼r) is 
approximated numerically:

Estimating regional displacement
The second step of the fNAV framework is to estimate 
fNAV coefficients for each voxel-wise spatial location. 
This step is necessarily to account for the non-linear 
motion of the heart and surrounding anatomy due to 
respiration wherein for example, the apex of the heart 
undergoes larger displacements than the base and great 
vessels. In principle we could perform the same itera-
tive optimization described by the previous section 
and Fig. 1c, for every region of our 3D image. However, 
to reduce the computational burden, we instead form 
a bank (BA) of fNAV coefficients, image reconstruc-
tions (BI), and metric values (BH), corresponding to all 
of the tested values from the previous step, as well as a 
small grid of values near the optimum coefficients for 
a total of (m) motion states (Fig. 1d). Now, in place of 
the steepest descent algorithm, the value of A(r) that 
minimizes H is efficiently solved by a sorting algorithm 
applied to BH and BA.
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Refining motion estimates
The third and final step of the proposed framework is a 
joint optimization of the image metric and a smoothness 
constraint applied to the fNAV displacement fields (D) 
calculated from Eq. 4:

where C(r) defines an average operator over a sliding 
window (c), applied to D. The metric term (H) is first 
solved using BH and BA as previously described, and D 
derived from that solution is iteratively updated using 
Eq.  4 (Fig.  1e). Finally, the refined estimates of A(r) are 
used to create a final 3D image with corrected respiratory 
motion (Fig. 1f ).

Tuning parameters
The fNAV framework contains four user-defined “tuning” 
parameters: (i) the number of motion states (m) added 
to BA, BI and BH, (ii) the width (b) of the localized image 
metric defined in Eq. 4, (iii) the width (c) of the smooth-
ness constraint for the displacement fields defined in 
Eq. 6, and (iv) the weighting parameter � defined in Eq. 5 
which provides a trade-off between the image metric and 
variation in the fNAV displacement fields. To investigate 
the impact of these parameters and determine their opti-
mum values a comprehensive numerical simulation was 
developed and used for a non-exhaustive search focused 
on a trade-off between computation time and accuracy in 
the respiratory motion estimations.

Numerical simulation framework
Self-navigated ECG-triggered 3D radial data are synthe-
sized using a numerical simulation developed for this 
work and inspired by the previously described MRXCAT 
approach [27]. In summary, high resolution (1 mm3) 3D 
volumes covering the chest are derived from the XCAT 
software which contains labels for each tissue of interest 
and produces realistic nonrigid cardiac and respiratory 
motion [28]. For a user-defined maximum level of res-
piratory motion, a total of 400 unique volumes are gen-
erated from XCAT and arranged into a five-dimensional 
(5D) array representing the 3D volume sampled across 20 
phases of a full cardiac and respiratory cycle. The ground 
truth respiratory motion-fields are also generated from 
XCAT.

To create synthetic physiological data, cardiac cycles 
with realistic heart-rate variability and respiratory cycles 
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with variability in both frequency and amplitude are gen-
erated, spanning the length of a synthetic CMR acquisi-
tion [29]. The user-defined acquisition parameters for 
the synthetic CMR sequence (Table  1) are chosen to 
match the in vivo data acquisitions described in the fol-
lowing section. For a given timepoint in the synthetic 
acquisition, a 3D volume representing the desired car-
diac and respiratory phase is interpolated from the 5D 
array described above, the labelled tissues are converted 
to CMR contrast using relaxation properties from the 
literature and a bSSFP signal equation, and the inverse 
NUFFT, which contains simulated 3D coil sensitivities, 
is used to extract the desired radial readout [29]. Finally, 
complex gaussian noise is added to the synthetic k-space 
data.

Numerical simulation data acquisition
To optimize the tuning parameters of the fNAV algo-
rithm, validate displacement field estimations, and vali-
date image reconstructions, 500 synthetic data sets were 
generated using the framework described above. The 
maximum respiratory motion amplitude ranged from 
0–5  mm, 0–10  mm, and 5–20  mm along the x (LR), y 
(AP), and z (SI) directions, respectively.

Healthy subject and patient data acquisition
In this retrospective study, in  vivo data were analyzed 
from 22 healthy subjects (7 female, 27 ± 5 years) and 549 
cardiac patients (196 female, 58 ± 18  years) that were 
scanned at our institution between May 2014 and May 
2016 on a 1.5  T clinical CMR scanner (MAGNETOM 
Aera, Siemens Healthineers, Erlangen, Germany) with 
the previously described prototype sequence and scan 

Table 1  Simulated and in vivo acquisition parameters

Parameter Simulations Healthy subjects Cardiac patients

Field-of-view 
(mm3)

220 200–210 185–250

Voxel size (mm3) 1 0.98–1.09 0.88–1.15

Excitation angle (°) 100 90–115 60–115

Repetition time 
(ms)

3.14 2.97–3.33 2.5–5.27

Echo time (ms) 1.6 1.57–1.76 1.56–1.79

Radial interleaves 560 191–492 199–2351

Profiles per inter-
leave

26 25–69 8–60

Mean RR-interval 
(ms)

850–1500 729–1401 583–1546

Acquisition win-
dow (ms)

82 50–71 20–150

Acquisition time 
(s)

475–843 219–363 167–917
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parameters listed in Table 1 [9]. Inclusion of patients was 
based on available raw data from the above time period 
without exclusion and therefore consisted of a range of 
pathologies including coronary artery disease and con-
genital heart disease. Patient heart rates were not con-
trolled by pharmaceutical methods during the CMR 
examination. All participants provided written informed 
consent in accordance with our institutional guidelines.

Image reconstruction
To study the performance of fNAV, all the simulated plus 
the 571 in vivo human data sets were reconstructed using 
4 different approaches. In addition to the fNAV recon-
struction described above and in Fig.  1, images were 
reconstructed without motion correction, using a previ-
ously reported method for 1D correction of self-naviga-
tion data [8], and using respiratory resolved XD-GRASP 
[14]. The XD-GRASP reconstruction matched previously 
reported parameters with total variation along the respir-
atory dimension (weight: 0.05), and solved using a con-
jugate gradient algorithm with 20 iterations [13, 14]. All 
reconstructions and analyses were performed in MAT-
LAB (MathWorks, Inc., Natick, Massachusetts, USA) 
on a workstation equipped with two Intel Xeon CPUs, 
512 GB of RAM, and an NVIDIA Tesla GPU. To increase 
the computation speed for fNAV reconstruction parallel 
processing was used to reconstruct individual volumes 
for the image bank. For all in vivo data sets, reconstruc-
tion times were recorded for RSN, XD-GRASP, and fNAV 
reconstructions and compared using paired t-tests with 
the Bonferroni correction for multiple comparisons.

Motion estimation analysis
To assess the accuracy of fNAV estimates of 3D nonrigid 
motion, the optimized fNAV motion maps were visually 
compared to the ground truth values for the simulated 
data sets, and to motion maps derived from co-regis-
tering the end-inspiratory and end-expiratory bins of 
the XD-GRASP reconstructions for healthy subject and 
cardiac patient data using an open-source software for 
non-rigid image registration: NiftyReg [30]. The quality 
of the fNAV motion maps was then assessed by a linear 
fit and Pearson correlation coefficient for the x, y, and z 
components across four regions of interest approximately 
defined over the aortic arch, base of the heart, apex of the 
heart, and liver.

Image quality analysis
To assess the impact of motion correction on both 
simulated and in  vivo image reconstruction, quantita-
tive assessment of image quality across all reconstruc-
tions was assessed by the percentage vessel sharpness 
and visible vessel length of the left main + left  anterior 

descending (LAD), left circumflex (LCX), and right 
(RCA) coronary arteries using Soap-Bubble [31]. For 
simulated images, this process was automated using the 
known vessel locations and therefore all 500 simulated 
data were assessed for vessel sharpness but not for vessel 
length. Conversely, all 22 healthy subjects were manually 
examined using Soap-Bubble as was a subset of 20 ran-
domly selected cardiac patients. All measurements were 
statistically compared using paired t-tests with the Bon-
ferroni correction for multiple comparisons.

For a given healthy subject or cardiac patient, images 
corresponding to the four reconstruction methods were 
placed in random order and the best reconstruction 
method was identified, based on the greatest overall vis-
ibility and sharpness of both the coronary arteries and 
ventricular septum, by a blinded expert reviewer (DP) 
with ten years experience in CCMRA. This analysis was 
performed on all 571 in vivo data sets and statistical sig-
nificance was measured using a chi-square test. For the 
same subset of 20 cardiac patients chosen randomly for 
sharpness measurements, two blinded expert reviewers 
(DP and MS) graded the image quality by consensus for 
each reconstruction in a randomized order according to 
the following Likert scale: 0—non-diagnostic, 1—marked 
blurring, limited diagnostic value, 2 -moderate blurring, 
but diagnostic value, 3—mild blurring, good diagnos-
tic value, 4—excellent diagnostic value, with half grades 
assigned to images that fall between the 5 categories [32]. 
Statistical significance was measured using a paired t-test 
with the Bonferroni correction for multiple comparisons. 
Finally, two patients who underwent x-ray coronary angi-
ography were chosen to provide a qualitative comparison 
between x-ray angiography and fNAV images.

Results
Tuning parameters
Using the numerical simulation, the optimum size of the 
coefficient, image, and, metric banks corresponding to 
the number of motion states (m) considered in the fNAV 
reconstruction, was determined by a linear distribution 
between the uncorrected state (i.e. Ax = Ay = Az = 0) and 
the optimum bulk fNAV coefficient as described in Fig. 1. 
This set-up was empirically observed to provide adequate 
representation of the nonrigid components of the ground 
truth simulated respiratory motion without the need for 
exhaustive searches. Additionally, the width of the local-
ized image metric (b = 30  mm), width of the smooth-
ness constraint (c = 7  mm), and weighting parameter ( � 
= 0.75) provided the highest accuracy for respiratory 
motion estimation. Additional file  1: Figure S1 provides 
a quantitative analysis of the tuning parameters as a func-
tion of root-mean-squared error calculated between 
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fNAV reconstructions and ground truth for simulated 
data.

Image reconstruction
The reconstruction time for fNAV images (mean and 
standard deviation) was significantly higher than RSN 
(6.1 ± 2.1 min vs 1.4 ± 0.3, min, p < 0.025) but significantly 
lower than XD-GRASP (6.1 ± 2.1 min vs 25.6 ± 7.1, min, 
p < 0.025). Variability in reconstruction time was primar-
ily due to the number of active coil elements, matrix size, 
total number of acquired lines, and number of motion 
states present in the final fNAV reconstruction.

Motion estimation analysis
Figure  2 compares representative fNAV displacement 
fields to reference displacement fields during end-inspi-
ration. For simulated data (Fig.  2a–c), the reference is 
the ground truth, whereas for healthy subject (Fig. 2d–f) 
and patient data (Fig. 2g–i) the reference corresponds to 
displacement fields derived from registering XD-GRASP 
images. Overall, there is good visual agreement between 
fNAV displacement fields and the corresponding refer-
ence displacement fields. An animated version of the 
fNAV and reference displacement fields demonstrating 
the full respiratory range is included as Additional file 2: 
Video S1.

For further evaluation of fNAV motion estimates, Fig. 3 
plots the mean x, y, and z components of the fNAV and 
reference displacement fields in ROIs containing the aor-
tic arch, base and apex of the heart, and liver, for each 
simulated (Fig.  3a–d), healthy subject (Fig.  3e–h), and 
patient (Fig.  3i–l) data set. Overall, there is high corre-
lation between the fNAV, and reference displacement 
estimates in particularly for the primary z direction in 
regions containing the heart. At the periphery of the 
image there is somewhat weaker correlation as well as for 
small values of displacement.

Image quality analysis
Figure 4 shows curved reformatted images of the LAD 
(blue arrows) and RCA (red arrows) from reconstruc-
tions of simulated data across three levels of respira-
tory motion. At low levels of motion (Fig. 4a: maximum 
amplitudes LR = 0  mm, AP = 0  mm, SI = 10  mm), the 
self-navigated (second column), XD-GRASP (third 
column), and fNAV (fourth column) provide clear vis-
ual improvement over the uncorrected images (first 
column) and the resulting images are similar to the 
ground truth reference (fifth column). However, for 
increasing levels of respiratory motion (Fig.  4b: maxi-
mum amplitudes LR = 0 mm, AP = 5 mm, SI = 10 mm, 
Fig. 4c: maximum amplitudes LR = 5 mm, AP = 10 mm, 
SI = 20  mm), only fNAV and XD-GRASP provide 

comparable visual image quality to the reference with 
less noise but more blur in the XD-GRASP reconstruc-
tions due to regularization.

Figure  5 provides a summary of vessel sharpness 
measurements across all 500 simulated data sets for 
the four reconstruction methods and three vessels. 
Overall, these simulated results corroborate previous 
studies showing that RSN provides a statistically sig-
nificant increase in vessel sharpness relative to uncor-
rected images, that XD-GRASP images are significantly 
sharper than RSN, but we also see that fNAV leads to 
significantly sharper coronary arteries than all other 
reconstruction methods for the three vessels in keeping 
with the qualitative results shown in Fig. 4.

Figure  6 shows curved reformatted images of the 
RCA (Fig.  6a), LAD (Fig.  6b), and LCX (Fig.  6c) from 
three representative healthy subjects. Overall, these 
in  vivo images corroborate the findings from the sim-
ulated data shown in Fig.  4 with fNAV providing the 
most consistent visualization of the full length of all 
three vessels. Similarly, Fig.  7 shows curved refor-
matted images of the RCA (Fig.  7a), and LAD + LCX 
(Fig.  7b, c), and LCX (Fig.  7c) from three representa-
tive patients. Once again, these images corroborate the 
findings from both the simulated data and healthy sub-
jects with fNAV providing the best conspicuity of all 
three observed coronary arteries.

Figure  8 provides a summary of vessel sharpness and 
visible length measurements across all 22 healthy sub-
jects and a subset of 20 cardiac patient data sets for the 
four reconstruction methods and three vessels. Over-
all, fNAV provides the sharpest vessel measurements 
with statistically significant increases relative to all other 
reconstructions in both the first 4 cm and full length of 
the RCA, LAD, and LCX (p < 0.01). Conversely, vessel 
length measurements were relatively consistent across 
the four reconstruction methods.

In the assessment of which reconstruction method was 
selected as the best image by an expert reviewer across 
all 571 in vivo data sets, RSN (n = 51) was chosen more 
often than uncorrected (n = 15), XD-GRASP (n = 61) 
slightly more than RSN, but overall fNAV (n = 444) was 
observed to provide the best image quality in 78% of 
the data sets (p < 0.001). Additionally, consensus grades 
of fNAV images (2.6 ± 0.6) were significantly higher 
(p < 0.001) than uncorrected (1.7 ± 0.7), RSN (1.9 ± 0.6), 
and XD-GRASP (1.8 ± 0.8).

Finally, Fig.  9 demonstrates the feasibility of using 
fNAV to visualize coronary artery disease through quali-
tative comparison to x-ray coronary angiography. In two 
patients, one with a significant stenosis (A-B) and one 
with a total occlusion (C-D), the disease is well visualized 
by the corresponding fNAV images.
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Fig. 2  Vector representation of respiratory motion. Displacement fields derived from ground truth (a) and focused navigation (fNAV) 
reconstructions of simulated data (b) demonstrate the nonrigid behavior of respiratory motion during end-inspiration, and excellent visual 
agreement is observed between fNAV and ground truth as shown by the difference image (c). Similarly, displacement fields derived from registering 
the frames of extradimensional golden-angle radial sparse parallel (XD-GRASP) reconstructions of a representative healthy subject (d) and cardiac 
patient (g) are comparable to those derived using fNAV (e, h) as demonstrated by their corresponding difference images (f, i). An animated version 
of this figure is included as Additional file 2: Video S1
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Discussion
In this work, we developed and validated a novel frame-
work for nonrigid, regional intra-acquisition correction 
of respiratory motion in self-navigated 3D whole-heart 
CCMRA scans. We showed that fNAV can accurately 
estimate and correct 3D respiratory motion yielding sig-
nificant improvements in image quality and vessel sharp-
ness relative to previously established approaches for 
3D radial CCMRA. Validation of the fNAV framework 
and tuning parameters were performed in a compre-
hensive numerical simulation. These numerical results 
were then corroborated by in vivo reconstructions of 22 
healthy subject and 549 cardiac patient data sets demon-
strating the robustness of our proposed reconstruction 
framework.

Our results agree with previous studies that used 
the same self-navigated sequence to demonstrate 
improved image quality when comparing respiratory-
resolved XD-GRASP reconstructions to motion cor-
rected reconstructions using a 1D translational model. 
Yet in our study, motion correction using fNAV con-
sistently yielded the highest values for objective vessel 
sharpness measurement when compared to both RSN 

and XD-GRASP in simulations, healthy subjects, and 
cardiac patients. Additionally, fNAV was selected as 
the best reconstruction with a statistically significant 
greater frequency in the more subjective yet blinded 
image quality assessment of the in  vivo data and 
received statistically significantly higher grades in the 
Likert scale consensus scoring by two expert review-
ers. This suggests that not only is a 3D model impor-
tant for respiratory motion correction but that within 
the range of simulated and observed in  vivo motion, 
XD-GRASP may suffer from blur due to uncorrected 
intra-bin motion or over-regularization. Additionally, 
fNAV reconstruction could be performed significantly 
faster than XD-GRASP (6.1 ± 2.1  min vs 25.6 ± 7.1, 
min, p < 0.025). In principle, the motion information 
derived from fNAV could be used to inform intra-
bin correction of XD-GRASP reconstructions [33] 
or the fNAV displacement fields could be inserted 
directly into a compressed sensing or similar itera-
tive denoising reconstruction [34]. Such approaches 
may allow for a reduction in scan time albeit at the 
likely cost of increased computation time during image 
reconstruction.

Fig. 3  Quantitative evaluation of respiratory motion estimation. The mean × (left–right; LR), y (anterior–posterior; AP), and z (superior-inferior; SI) 
components of respiratory motion estimated by fNAV measured in four regions of interest are shown for all 500 simulated data sets (a–d), all 22 
healthy subject data sets (e–h) and all 549 cardiac patient data sets (i–l). Motion estimates derived from fNAV are compared to ground truth, and 
estimates derived from image registration for simulated and in vivo data, respectively. The results of a linear fit for each component is denoted by 
dash lines with the corresponding slopes and Pearson correlation coefficients given by [Sx, Sy, Sz] and [Rx, Ry, Rz] respectively
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Overall, fNAV builds on previous work using autofo-
cusing to correct motion in CMR images but this study 
is, to our knowledge, the first use of autofocusing for cor-
recting free-breathing 3D radial self-navigated CCMRA 
data. Cheng et al. employed a localized image metric to 
approximate nonrigid motion correction as multiple 
translational corrections [16, 18]. In their approach, so-
called butterfly navigators were added to a 3D Cartesian 

acquisition providing motion estimates for each spatial 
direction and the signals from individual receiver coil 
channels were used to constrain the possible recon-
structed motion states. In our work, the use of the self-
navigation signal allows us to estimate motion without 
significantly modifying the imaging sequence. Addition-
ally, the method proposed in this work for joint optimiza-
tion of the image metric and motion map smoothness is 

Fig. 4  Curved reformats of simulated data reconstructions at increasing levels of simulated motion. a Respiratory motion in only one dimension 
(maximum amplitudes LR = 0 mm, AP = 0 mm, SI = 10 mm). b Respiratory motion in two dimensions (maximum amplitudes LR = 0 mm, 
AP = 5 mm, SI = 10 mm). c Respiratory motion in the dimensions (maximum amplitudes LR = 5 mm, AP = 10 mm, SI = 20 mm). Arrows denote the 
right (red) and left anterior descending (blue) coronary arteries

Fig. 5  Quantitative evaluation of vessel sharpness from simulated data. Percent vessel sharpness measured across the full length of the right 
coronary artery (RCA) (left), left anterior descending coronary artery (LAD) (middle), and left circumflex coronary artery (LCX) (right) in all 500 
simulated data sets is shown. Colored diamonds denote statistically significant differences between the four reconstruction methods (p < 0.01)
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similar to improvements discussed but not implement in 
previous work [16, 17].

A key feature of the proposed fNAV approach is the 
ability to convert a unitless 1D signal into regional, mil-
limetric 3D displacements. We can do this by leveraging 
the rich 3D isotropic information in our resulting images 
which lend themselves to quantitative evaluation by our 
chosen image metric. Our results suggest that this works 
very well in regions containing cardiac anatomy where 
the visibility of complex structures is sensitive to respira-
tory motion and consequently can be captured by the 
image metric. Conversely, regions in the image with less 
complex structures or relatively uniform signal are less 
sensitive to change and may be misinterpreted by the 
image metric, which may weaken our ability to estimate 

3D motion in regions such as the lungs or chest wall, for 
example.

Alternative methods for measuring motion during the 
acquisition include separately acquired two-dimensional 
(2D) [35–38], and three-dimensional (3D) [20, 39–44] 
image-based navigators. In particular, the works of Ingle 
et al. and Luo et al. have demonstrated that image navi-
gators can be combined with autofocusing to reconstruct 
motion corrected data acquired using 3D spiral cones 
[17, 20, 42]. While, these multidimensional approaches 
inherently provide more information about the under-
lying motion, they require interruption of the imaging 
sequence to acquire the navigators and typically do not 
have the required resolution for direct estimation of 
nonrigid motion. For ECG-triggered coronary artery 

Fig. 6  Curved reformats of healthy subject data. The RCA (a), LAD (b), and LCX (c) are shown from a three representative volunteers with white 
arrows denoting regions of the vessels where image quality varies between the four reconstruction methods
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imaging, the sequence is already interrupted and there-
for a non-issue but recently proposed methods for “free-
running” CCMRA may benefit from the fNAV approach 
as they already periodically acquire SI readouts [21, 45, 
46]. The combination of fNAV and free-running may 
be applicable for total correction of respiratory motion 
thus producing cardiac motion-resolved 4D whole-heart 
CCMRA images. fNAV may also be used for intra-bin 
correction for cardiac- and respiratory motion-resolved 
5D whole-heart images. 3D respiratory information can 
also be derived through nonrigid co-registration of res-
piratory resolved images [47–52] but may be limited 
to inter-acquisition corrections in image space unless 
combined with a generalized matrix model [34, 53, 54] 
at the cost of increased computational complexity. For 

even further flexibility, our proposed approach could in 
principle be combined with a respiratory signal that is 
independent of the CMR sequence such as an external 
respiratory belt, or the recently proposed Pilot Tone Nav-
igation System [55] which may  in turn facilitate motion 
correction using other types of sequences.

Our results clearly demonstrate that fNAV provides 
improved image quality relative to previously described 
methods for 3D radial CCMRA and the two example 
comparisons to coronary angiography show the poten-
tial for evaluation of coronary disease using fNAV. Con-
sequently, further studies are needed to investigate the 
impact of these improvements on clinically relevant 
parameters such as identification of stenoses and anoma-
lous coronary arteries, as well as emerging techniques 

Fig. 7  Curved reformats of cardiac patient data. The RCA (a) and LAD + LCX (b, c) are shown from three representative patients with white arrows 
denoting regions of the vessels where image quality varies between the four reconstruction methods
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such as 3D modeling of the coronary anatomy for sub-
sequent CCMRA-based fractional flow reserve estima-
tions [56]. Furthermore, while the focus of this work was 
on coronary imaging, the employed 3D radial sequence 
provides whole-heart coverage with high isotropic spatial 
resolution and therefore the proposed fNAV approach 
may also be useful for evaluating other abnormalities in 
the cardiac anatomy such as congenital heart defects.

Limitations and future directions
Validation of the fNAV framework including the identi-
fication of optimum tuning parameters was largely per-
formed using a numerical simulation developed for this 
work. The goal of the numerical simulation was to syn-
thesize data with sequence parameters that match in vivo 
acquisitions and simulate a realistic range of respiratory 
motion and heart rate variability. Still, limitations of this 
simulation framework include the appearance of the cor-
onary arteries which are relatively large and well defined 
when compared to in  vivo CMR data sets because the 
XCAT models are derived from computed tomogra-
phy data. Similarly, only one model of “normal” cardiac 
anatomy was used which does not reflect the variation we 
see in both healthy subjects and cardiac patients. Finally, 
the CMR physics simulated in this model consisted of a 

simplified equation for bSSFP contrast and complex coil 
sensitivities, neglecting the additional sources of artifact 
as well as effects of the T2-prep, saturation-slab, and fat 
saturation pulses that are used in the in vivo sequence.

Overall, the simulation provided a useful means of 
developing the fNAV framework, assessing the effects 
of motion and characterizing errors in the fNAV recon-
structions, and the simulated results were generally cor-
roborated by the large cohort of in  vivo data that were 
analyzed. Nevertheless, improvements to the simulation 
framework or the addition of another ground truth meas-
ure may yield further improved tuning of the parameters 
for the fNAV framework. For example, an inherent trade-
off exists when selecting the width (b) of the localized 
image metric in Eq. 4. If the value of b is too small, noise-
like artifact can appear in the derived displacement fields 
and subsequent images while a large value of b may fail 
to capture nonrigid deformation [16, 17, 19]. Addition-
ally, the number of motion states considered for the final 
fNAV reconstruction has a large impact on the ability to 
assess non-linearities in the displacement fields. This is 
particularly evident in the displacement fields shown in 
Fig. 2a where motion of the chest wall, for example, is not 
well represented by the fNAV reconstructions of simu-
lated data.

Fig. 8  Quantitative evaluation of vessel sharpness and length from all healthy subjects (n = 22) and a subset of cardiac patients (n = 20). Percent 
vessel sharpness measured across the first 4 cm (top row) and full length (middle row) of the RCA (left), LAD (middle), and LCX (right) as well as 
vessel length (bottom row) is shown. Colored diamonds denote statistically significant differences between the four reconstruction methods
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Analysis of image quality across all four reconstruction 
methods was performed quantitatively using measure-
ments of vessel sharpness and length and qualitatively via 
the best selected image for a given subject as identified by 
an expert reviewer. The rationale to choose only the best 
image was based on the need to evaluate 571 in vivo data 
sets. However, in subjects with poor overall scan quality 

or minimal motion it may be difficult to identify a single 
best image and therefore subjective image grading was 
also performed in a subset of 20 cardiac patients by two 
expert reviewers by consensus. Overall, both qualitative 
analyses agree with the overall narrative provided by the 
quantitative results that show fNAV provides the overall 
best image quality.

Fig. 9  Visualization of coronary artery disease using coronary angiography, RSN, XD-XD-GRASP, and fNAV. a Critical stenosis of the left main shown 
(b) chronic total occlusion of the proximal RCA. Aneurismal LAD (c) and RCA (d) in a patient with Kawasaki disease
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In the current work, we focus on the estimation and 
correction of respiratory motion under the assumption 
that the cardiac motion is adequately compensated for 
using prospective triggering and an acquisition window 
chosen during the cardiac resting phase. However, heart-
rate variability, arrhythmias, and misidentification of the 
resting phase are not currently accounted for by fNAV 
and may degrade image quality. Still, for a given subject, 
the four reconstruction methods compared in this work 
were applied to the same data sets and therefore, residual 
cardiac motion is expected to have an equal effect on the 
resulting images. To overcome the limitations of pro-
spective triggering, free-running approaches have been 
proposed for CMRA that acquire data throughout the 
cardiac cycle and, as mentioned above, may be compat-
ible with the proposed fNAV framework [21, 45, 46].

Finally, in the current model, we assume that different 
regions of the image are affected by different respiratory 
motion amplitudes, but we do not consider the phase. As 
such, hysteresis effects may contribute to errors in our 
estimated displacement fields and degrade our image 
quality. This may be addressed by including additional 
parameters in our fNAV model (i.e. respiratory phases 
coefficients for each spatial direction) but will potentially 
increase the computation time if more motion states 
need to be considered. Regardless, the inclusion of addi-
tional spatial information such as self-navigation signals 
from individual receiver coils may help constrain the 
potential motion states [16, 57].

Conclusion
Focused navigation is a promising technique for improv-
ing the quality of self-navigated free-breathing 3D radial 
whole-heart CCMRA. This novel approach to respira-
tory self-navigation can derive 3D nonrigid motion 
estimations from an acquired 1D signal yielding statisti-
cally significant improvement in image sharpness rela-
tive to 1D translational correction as well as XD-GRASP 
reconstructions. Using this approach motion corrected 
images can be reconstructed in ~ 5–10  min compared 
to ~ 20–30 min using XD-GRASP, potentially facilitating 
integration in a clinical environment. Further study of 
the diagnostic impact of this technique is therefore war-
ranted to evaluate its full clinical utility.
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