Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics.
Détails
Télécharger: quantification segmentation radiomics-final.pdf (34170.16 [Ko])
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_93C1E02D6980
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics.
Périodique
Seminars in musculoskeletal radiology
ISSN
1098-898X (Electronic)
ISSN-L
1089-7860
Statut éditorial
Publié
Date de publication
02/2020
Peer-reviewed
Oui
Volume
24
Numéro
1
Pages
50-64
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
Although still limited in clinical practice, quantitative analysis is expected to increase the value of musculoskeletal (MSK) imaging. Segmentation aims at isolating the tissues and/or regions of interest in the image and is crucial to the extraction of quantitative features such as size, signal intensity, or image texture. These features may serve to support the diagnosis and monitoring of disease. Radiomics refers to the process of extracting large amounts of features from radiologic images and combining them with clinical, biological, genetic, or any other type of complementary data to build diagnostic, prognostic, or predictive models. The advent of machine learning offers promising prospects for automatic segmentation and integration of large amounts of data. We present commonly used segmentation methods and describe the radiomics pipeline, highlighting the challenges to overcome for adoption in clinical practice. We provide some examples of applications from the MSK literature.
Pubmed
Web of science
Création de la notice
29/01/2020 14:14
Dernière modification de la notice
21/05/2021 6:11