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Abstract 
 
Although still limited in clinical practice, quantitative analysis is expected to increase the value 
of musculoskeletal imaging. Segmentation aims at isolating the tissues and/or regions of 
interest in the image and is crucial to the extraction of quantitative features, such as size, 
signal intensity, or image texture. These features may serve to support the diagnosis and 
monitoring of disease. Radiomics refers to the process of extracting large amounts of features 
from radiological images and combining them with clinical, biological, genetical, or any other 
type of complementary data to build diagnostic, prognostic or predictive models. 
The advent of machine learning offers promising prospects for automatic segmentation and 
integration of large amounts of data.  
In this paper, we present commonly used segmentation methods and describe the radiomics 
pipeline, highlighting the challenges to overcome for adoption in clinical practice. We will 
provide some examples of applications from the musculoskeletal literature. 
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Today’s practice of musculoskeletal imaging remains mainly based on the subjective, 
qualitative analysis of imaging data by radiologists. However, there is a general agreement on 
the fact that quantitative assessment could increase the value of radiological examinations, 
both in the research and the clinical settings 1. Quantitative information can be retrieved not 
only from functional or compositional imaging techniques such as perfusion MRI or T2 
mapping, which are quantitative by nature, but also for morphological techniques in which 
the information contained in the image can be quantified through the analysis of size, 
intensity, or texture for instance.  
 
Regardless of the organ, disease, or imaging modality, the processing pipeline for quantitative 
image analysis usually involves image segmentation (Figure 1). This step is critical as it isolates 
the tissue(s) of interest in the image. Once the tissues and/or regions of interest have been 
identified, quantitative variables also called features, such as size, signal intensity, or image 
texture, can be extracted. These features may be used directly to support the diagnosis or 
monitoring of disease. They can also be combined with clinical, biological, or genetical data 
in decision-support models to assist physicians, either for the diagnosis and prognosis of 
pathological conditions, or for the prediction of therapeutic responses. The process of 
extracting large amounts of features from radiological images and combining them with 
clinical, biological, genetical, or any other type of complementary data to build diagnostic, 
prognostic or predictive models is referred to as radiomics, and is expected to be core to the 
development of personalized medicine.  
 
The advent of machine learning methods is expected to improve and facilitate the 
quantitative image analysis workflow. It notably offers promising prospects for automatic 
segmentation and integration of large amounts of data, which are critical to adoption in 
routine practice. 
 
This review paper on image quantification will describe the methods for image segmentation 
as well as the concept of radiomics, which is becoming a hot topic in the field of imaging 
thanks to the recent progress made in machine learning. First, we will review some definitions 
and background information. Second, we will present commonly used segmentation 
methods, highlighting their strengths and weaknesses. Finally, we will present the concept of 
radiomics in greater details, emphasizing the radiomics pipeline, as well as the challenges to 
overcome. We will provide some examples of applications taken from the musculoskeletal 
literature.  
 
 

1. Definitions and background information 
1.1. Image segmentation 

Image segmentation refers to the process of delineating region(s) of the image with a specific 
semantic meaning, such as bone, cartilage, or muscle. In other words, it corresponds to the 
fact of identifying groups of pixels or voxels that, together, constitute a tissue of interest, or 
a portion of it. The tissues or regions of interest are defined by their content (such as their 
signal intensity, or texture) and their contour. 
Segmentation can be done manually, semi-automatically, or automatically.  
Manual segmentation is the most basic form of image segmentation, and is considered as the 
gold standard. However, manual segmentation is usually both time-consuming and subject to 



intra- and inter-user variability. To streamline and improve this process, much effort has 
focused on developing semi-automatic and automatic segmentation methods, which in 
theory should present higher reproducibility and accuracy. 
A variety of segmentation tools already exist as part of computer-aided diagnostic (CAD) 
software, and some basic segmentation tools are included in most image viewers and Picture 
Archiving and Communication Systems (PACS). These tools are frequently used in clinical 
practice, for example, to detect and quantify oncological lesions. 
While segmentation tools have long existed, machine learning techniques have opened the 
doors for new automatic processes. However, whether it is applied to musculoskeletal 
imaging or medical imaging in general, whether manual, semi-automatic or automatic, 
machine-learning-based or not, image segmentation remains a challenging task. This is 
particularly true for the musculoskeletal system due to the complexity and variability of the 
structures of interest.  
Since segmentation is fundamental to almost every quantification task, and may significantly 
influence the results of feature extraction, it must be properly assessed and validated. 
Although the details of the validation process are beyond the scope of this review, it is 
important to keep the following basic notions in mind. The segmentation methods need to 
be validated notably in terms of repeatability (same results when performed multiple times 
on the same individuals in the same conditions), reproducibility (same results when 
performed using different equipment or operators), error (difference with respect to a 
ground truth, usually through manual segmentation), and efficiency (including both 
computational and user times) 2,3. The error is usually determined using metrics that measure 
spatial overlap (the most common of which is the Dice similarity coefficient) or boundary 
mismatch (such as the Haussdorf distance) 2. 
 

1.2. Radiomics 
The term radiomics was originally defined as the extraction of large amount of quantitative 
features from medical images 4. The name radiomics is derived from similar terms such as 
genomics and proteomics, which refer to features of genes or proteins, respectively, and 
which have been analyzed and used in the modeling of pathological conditions. These “omics” 
are considered as the building blocks required for precision or personalized medicine, where 
the aim is to tailor medical treatment to the characteristics of individual patients 4,5.  
The term radiomics has also been used when referring to the whole process leading to 
decision support models, including data extraction and subsequent analysis, which may be 
done in consideration of other information obtained from the patient, such as clinical, 
biological, or genetical data 4,6–8. For the purpose of this paper, we will refer to radiomics as 
to all the steps of this “radiomics pipeline”. Another important term is “radiogenomics”, 
which was first used in radiation oncology to refer to the prediction of radiotherapy-induced 
toxicity. Currently it is most commonly used in reference to the analysis of the links that exist 
between radiomics (or imaging phenotype) and genomics (genetic profile). Sometimes, it has 
also been used in reference to the relationship of radiomic features to biological data beyond 
genomics, such as proteomics and metabolomics 6,7,9,10. 
Whether visible to the human eye or not, the quantitative features extracted from images are 
believed to provide information on tissue structure, biology or pathology that are correlated 
with, or complementary to clinical, biological or genetical data from the patient 6. In other 
words, radiomics may provide biomarkers of biological and pathological processes, 
potentially leading to diagnostic, prognostic, as well as predictive information. 



It is to note that the process of radiomics differs from the image analyses typically performed 
in CAD, which have long been used in imaging 11. In particular, the number of features 
incorporated by radiomics is much larger, up to hundreds or thousands. Second, the field of 
radiomics is not restricted to diagnostic aids as in CAD, but also includes prognostic and 
predictive models by integrating non-imaging data. 
Radiomics has mostly been developed in oncology, where it has become a hot topic thanks 
to its promise to provide non-invasive assessments of an entire tumor and its 
microenvironment 5,7. An additional advantage of radiomics is that it is not subject to the 
sampling errors, opposite to biopsies, especially when dealing with heterogeneous lesions 
12.  
While radiomics research has mostly focused on oncological applications, the process of 
radiomics can be applied to any condition that can be explored with imaging. This being 
said, very limited radiomics and radiogenomics literature is currently available in the other 
fields, particularly in the musculoskeletal field. 
In section 3, we will summarize the principle of the radiomics process, as well as some 
challenges to overcome in order for radiomics to translate into clinical practice. Moreover, 
we will present a few applications in the musculoskeletal field. For more in-depth 
presentation of the radiomics process and potential, the readers can refer to the oncology 
literature 6,9–12,12,13. 
 
 
2. Segmentation methods 
This section will describe the segmentation methods that aim to delineate regions of interest, 
also referred to as target objects. We will describe the families of methods available for 
segmenting the musculoskeletal system, independently of the imaging modality or tissue of 
interest (Figure 2). Although current efforts primarily focus on machine learning methods, we 
will include other families of segmentation methods in this review. Indeed, all segmentation 
methods remain interesting depending on the application and complex segmentation 
problems sometimes require combining different methods.  
We will first review the basic methods of segmentation which in their majority rely on simple 
intensity-based operations, such as thresholding or image filter convolutions (section 2.1.1 
and 2.1.2). These methods were the first to be used for medical image segmentation and 
largely adopted for musculoskeletal imaging. However, since they only use intensity-derived 
properties, they are moderately robust to image artefacts. The second group of methods 
corresponds to the model-based segmentation approaches (section 2.2). These methods 
were adopted to overcome the limitations of basic methods by including additional prior 
information beyond image intensity. For instance, the target can be set to have a closed and 
smooth parametrized contour, or the segmentation process can use more complex 
anatomical priors from statistical shape models or atlases. These mathematically more 
complex techniques come at the cost of being more computationally expensive. In the third 
group of methods (section 2.3), we will briefly present the graph-based techniques that have 
been proposed for musculoskeletal imaging. These methods differ from the previous ones in 
that they do not analyze the image in terms of voxels but in terms of graphs or networks of 
nodes and edges. Finally, we will present the methods based on machine learning, including 
both supervised and unsupervised approaches in Section 2.4. These methods, although 
already used for many years in segmentation tasks, have recently significantly gained in 
interest due to the rise of deep learning, which has shown impressively good performance in 



various computer-assisted tasks. However, the use of machine learning-based methods is 
only at its beginning in clinical practice, as their ability to be generalized remains to be proven.  
It is to note that the methods listed here are commonly used in combination rather than in 
isolation, as illustrated by some of the examples below. Moreover, many of the methods 
require pre-processing steps, such as denoising filters or inhomogeneity intensity correction, 
which are beyond the scope of this review.  
For the reader who is interested, sections 2.1 to 2.4 presents these methods in greater detail, 
along with specific examples taken from the musculoskeletal literature. There is considerable 
literature dedicated to segmentation methods that can be referred to for more extensive 
description 14–20. 
 

2.1. Basic methods 
 

2.1.1. Thresholding 
Image thresholding is an intensity-based method that allows simple segmentation at little 
computational expenses. It is based on the assumption that the region of interest has distinct 
intensity values compared to the rest of the image. The threshold can be applied to a pre-
defined area of interest or to the entire image. Multiple thresholds, including lower and upper 
thresholds, can be set.  
Thresholding is based on the image intensity only, and does not take into account any spatial 
or neighborhood information. It is therefore highly affected by noise and other intensity 
artefacts. Thanks to their simplicity, thresholding methods have been applied to segment a 
variety of musculoskeletal structures, such as bone, bone marrow lesions, knee effusion, or 
muscles 21–25. In particular, local or global thresholding techniques are often applied to 
radiography or CT images to segment mineralized structures that present high contrast with 
surrounding structures 26–29.  
One limitation of threshold-based segmentation is that threshold values are dependent on 
the modality, scanner or acquisition parameters. 
 

2.1.2. Edge-detection 
Edge-detection methods aim at finding object boundaries based on strong intensity 
transitions or discontinuities within the image. A large variety of edge-detector filters have 
been developed in the fields of computer vision and image processing 30. These filters are 
based either on a first-order derivative of the image intensity (eg. Sobel, Prewitt, Roberts,…) 
or on a second-order derivative (eg. Laplacian of Gaussian (LoG), Canny,…). Figure 3 illustrates 
the results obtained with different types of edge detector filters applied to a spine MR image.  
Since the filtering operation is based on intensity values, the detected boundaries are often 
incomplete or discontinuous (see Figure 3). Moreover, image noise and partial-volume 
effects, which are particularly strong at the edges, may blur the contours of the anatomical 
structures. These segmentation errors can be corrected to some extent using post-processing 
techniques such as mathematical morphological operations or more complex methods (e.g., 
interpolation or active contours) 31. 
 
Edge-based techniques have been often applied to segment knee structures with MRI. Lee et 
al. segmented the femurs and patellae based on a combination of second-order edge-
detection filters (LoG) and thresholding methods 32. In Carballido-Gamio et al., a semi-
automated approach was proposed using the first derivative of the image intensity for 



contour extraction of the femoral cartilage, with further refinement by the fitting of a curve 
on the extracted edge 33. Similarly, segmentation of knee cartilage has been done based on 
the semi-automated software proposed by Duryea et al., using a customized edge-tracking 
algorithm as an initial segmentation with further active-contour segmentation (see section 
2.2.1) and manual edits of the final contour 34–36. 
 

2.1.3. Region-growing methods 
Region growing methods typically start from seed points, which propagate to neighboring 
voxels based on predefined criteria, including homogeneity criteria of the region or edge 
properties 37. These methods are often semi-automated as seed-points are manually 
identified, with the limitation that the result will depend on the initial seeding. To overcome 
this limitation, strategies for automatically determining the initial seeds have been 
developed, such as atlas-based registration methods (see section 2.2.3). Adaptive region-
growing methods where the homogeneity criterion is automatically extracted from the image 
have also been proposed 38. Due to their reliance on intensity values, region-growing methods 
could be affected by “leakage” outside the region of interest 38. 
Waterton et al. applied region-growing methods to characterize diurnal changes in thickness 
or volume of the femoral articular cartilage of the knee in asymptomatic young adults 39. They 
used a 3D MRI segmentation of the femoral articular cartilage, with a manual seeding point, 
and a volume-growing algorithm. Thus, the resulting regions consisted of connected areas 
with similar pixel intensity values, determined via a threshold manually set by the user or 
automatically determined from a sample region. Finally, the segmentation was extended to 
adjacent slices, resulting in a three-dimensional segmentation. 
 

2.1.4. Watershed segmentation 
Watershed segmentation is a hybrid method that combines edge-based and region-based 
approaches (Figure 4) 40–42. The name watershed comes from a geographical analogy, where 
water collects in basins and as the water level increases, small basins merge into larger ones. 
Catchments basins corresponds to different regions of the image with homogeneous grey 
level. Watershed lines are ridges that separate these regions or catchment basins. They 
corresponded to the edges in the image. As a first step, the image is usually pre-processed 
using an edge-detection algorithm, influencing the end result (Figure 4.B1 and 4.B2, leading 
to 4.D1 and 4.D2, respectively). The pre-processed image is then treated as a topographic 
structure, where the intensity value of each image element characterizes its height at this 
point, forming ridges (watershed lines), valleys (minimums) and slopes (catchment basins) 
(Figure 4). Watershed strategies often lead to over-segmentation (Figure 4.D1). Merging 
strategies to fuse the obtained segments are required as additional post-processing steps. 
Grau et al. proposed a method based on an improved watershed transform, which instead of 
relying on the classical gradient calculation prior to the watershed, was based on differences 
of probabilistic maps and the introduction of prior knowledge in watershed segmentation 
using a statistical atlas43. Preliminary results on four knees showed accurate cartilage 
segmentation. Włodarczyk et al. used watershed to segment wrist bone at MRI in 37 subjects 
44. The segmentation procedure sequentially targeted the distal parts of the ulna and radius, 
the proximal parts of metacarpal bones and carpal bones. At every stage, markers of bones 
were determined first (using an atlas-based approach) and then a watershed from those 
markers was applied to find the final segmentation. Watershed segmentation has also been 
recently applied to segment knee cartilage with ultrasound images 45.  



 
2.2. Model-based segmentation 

The basic methods described in the previous section were the first applied for medical image 
segmentation for a variety of targets, and modalities. Basic methods are very efficient 
computationally, and require low level of input information as they solely rely on image 
intensities. However, as described above, they have intrinsic limitations such as the lack of 
generalizability, low robustness to image artefacts resulting in discontinuous edges or the 
need for post-processing. To simplify the highly complex task of segmentation, the use of 
prior anatomical information has proven to be very efficient. Prior information may be 
provided in many ways. For instance, by pre-defining the contour of the target object as 
smooth and closed, either explicitly or implicitly through parametrization (by active contours). 
Another type of prior knowledge could be a set of predefined rules based on known tissue 
properties or statistical measures (statistical shape models), or as a set of previous manual 
expert annotations (atlas-based techniques). Model-based segmentation strategies are the 
family of methods that first exploited these different types of prior knowledge to further 
improve and automatize the segmentation task. 
 

2.2.1. Geometric deformable models – Active contours 
Active Contour (AC) models perform image segmentation by tracking the evolution of 
parametric curves called snakes 46–49. AC models are mathematically formulated as an 
optimization problem, where the curve parameters are defined to maximize/minimize a 
certain criterion, referred to as energy. The deformation of the snake is guided by combining 
internal or external energies, such as a smooth and continuous contour (internal energy) or 
the fitting of the contour to image properties such as the image gradient or a region 
homogeneity (external energy). Thus, AC models have prior knowledge on human topology 
(segmented regions are closed and smooth). These techniques have been widely adopted in 
2D segmentation tasks but their extension to 3D segmentation is challenging. Another 
drawback of snakes is that they do not directly allow simultaneous treatment of multiple 
contours: one initial closed contour (or snake) has to be defined for each structure of interest 
to be segmented. This is illustrated in Figure 5 where we have plotted the evolution of 
multiple snakes for the segmentation of vertebrae on a sagittal MR image. Geodesic active 
contours (GAC) were introduced to overcome this limitation. GAC models are widely used in 
medical image segmentation for their flexibility, as they allow the handling of topology 
variations in the shape of the evolving contour. Thanks to the Chan-Vese formulation, GAC 
models may split apart and merge together, contrary to snakes 50. Moreover, their extension 
to 3D or higher dimensions is rather straightforward. 
AC contours were adopted by Duryea et al. to refine the initial edge-detection of the knee 
cartilage at MRI, leading to reproducible cartilage thickness and volume measurements 34. AC 
has also been applied to the segmentation of hip joint cartilage in MRI 34,51. Authors 
segmented the deep and superficial boundaries of acetabular and femoral cartilage with a 
semi-automated technique using 2D active contours. Based on an initial contour manually 
defined by the user, the segmentation was achieved through an optimization process based 
on an edge-based energy.  
 

2.2.2. Parametric deformable models: statistical shape models 
Statistical shape models (SSM), also known as point distribution models, can actually be seen 
as a statistical version of snakes, where additional information on the possible curve 



deformation is obtained from a training set and the energy minimization process restricted 
based on this information. Specifically, SSM are represented using a set of landmarks that 
allow using previously segmented objects (the training sample set) to describe their average 
shape and valid range of shape variation with a few parameters only (Figure 6) 52–54. In order 
to segment a new image, the shape model can be matched using different algorithms, the 
Active Shape Models (ASM) and the Active Appearance Models (AAM) being the most widely 
used 55. The ASM seeks to match a set of model points to the dataset by using image 
information in small regions around the landmark points. AAMs on the contrary act more 
globally, by minimizing the difference between the model and the target image based on the 
appearance of a whole region. 
SSMs have been used extensively for the segmentation of the musculoskeletal system. 
Solloway et al. performed one of the first studies using an ASM to segment the femoral 
cartilage from 0.5T MR images in both healthy subjects and patients with minor cartilage 
degeneration 53,56. They showed that the precision of ASM was significantly better than both 
manual and data-driven methods. Fripp et al. later proposed a new method to automatically 
segment the bones and extract the bone–cartilage interfaces in the knee using three-
dimensional active shape models, initialized with anatomical atlases 57,58. They demonstrated 
a high overlap agreement (the median Dice similarity coefficient was above 0.9) for all 
structures of interest in a dataset of 20 healthy subjects. Schmid et al. used SSMs for the 
segmentation of bone at MRI with small field-of-view images 59. They found clinically 
acceptable errors on a dataset of 86 MRI exams. 
 

2.2.3. “Anatomical” models: Atlas-based segmentation methods  
Atlas-based methods rely on anatomical priors in the form of an atlas to be registered to the 
target volume that has to be segmented 60. Thus, the segmentation problem is turned into an 
image registration problem (Figure 7). An atlas includes a template as well as the information 
on the object to be segmented, or label. This atlas is then registered to the dataset to be 
segmented by searching a voxel-to-voxel (or pixel-to-pixel) correspondence in 3D (or 2D) 
images. Volumetric registration is often done in two steps. Firstly, a global registration (affine 
or rigid transformation) is performed to obtain an initial alignment at a low computational 
cost. Secondly, a local registration is applied to address the anatomical variability among 
individuals. Once a spatial transformation is found between the template and the subject, 
segmentation is done by propagating the label to the data to be segmented. Labels from 
multiple atlases, instead of a single atlas, may be used when available 61. 
Kapur et al. used a single atlas-based approach to segment the tibia and the femur from MRI 
images 62. Building on this initial atlas-based segmentation, the authors used a region growing 
algorithm to refine the tibia and femur segmentations and a Bayesian probabilistic framework 
(density estimation methods in Section 2.4) to also segment the cartilage. Their algorithm was 
compared to manual segmentation on seven healthy subjects with low error measures. 
Lee et al. have proposed a fully automated method to segment cartilage from MRI using 
multiple atlases 63. They worked on a dataset of 150 MRI images, where 100 were used as 
atlases and 50 images were used to test the segmentation algorithm. All atlases were 
registered to a target image by a non-rigid registration scheme and the best matched atlases 
were used to propagate the labels. This first segmentation was then refined using a graph cut 
algorithm (see section 2.3). 
 

2.3. Graph-based methods 



Graph-based techniques have been very successful in many computer vision problems such 
as image denoising, texture synthesis or image segmentation problems. They consist in 
modeling the image as a graph of nodes (or vertexes) connected by a set of arcs (or edges). 
Such mathematical representation is very flexible as it generalizes well to different types of 
data, such as high dimensional datasets (i.e. multi-modal/spectral images or 3D or 4D 
volumes) or images with complex data representation at each point (e.g. diffusion tensor 
MRI). Graph theory analysis has been extensively studied in many different computer vision 
applications, and the existing algorithms and theorems can be easily translated to medical 
image segmentation.  
Graph-based methods may encode global image information, thus allowing the use of 
contextual information 64. In practice, the segmentation problem is transformed into a 
“vertex-labeling” or “graph-partitioning” problem which requires assigning correct labels to 
each node of the graph according to its properties 65. While the nodes of the graph most 
commonly are the image pixels or voxels, other types of vertices can also be used to construct 
the graph, such as region- or user-specific markers. The edges are then set between the nodes 
with weights corresponding to a similarity metric between the nodes, for instance based on 
similarity intensity differences. Like active contour-based methods (see section 2.2.1), graph-
partitioning methods aim also at minimizing an energy computed from vertex properties (e.g. 
intensities) and coherence between neighboring vertices (boundary term). 
Shim et al. have developed a semi-automated graph cut program for segmenting knee 
cartilage on high-spatial-resolution 3T MRI 66. They used the classical graph cut algorithm with 
user-defined seeds as hard constraints to narrow the search space for possible segmentations 
65. They evaluated the proposed semi-automated algorithm on MR images of 10 patients with 
varying severity of osteoarthritis and compared it to manual segmentations from two expert 
radiologists. They showed that the semi-automated method was significantly faster and more 
reproducible. 
  

2.4. Machine learning methods 
In the last few years, a great body of work has focused to employ machine learning techniques 
for medical imaging segmentation 67. Machine learning lies on the boundary of several 
different disciplines, mainly computer science, statistics, mathematics, and engineering 
(pattern recognition and signal processing). Machine learning algorithms aim at learning a 
function (f) that best maps input variables (X) to an output variables (Y). f can then be used to 
predict (Y), given new examples of input variables (X). f can represent a large variety of 
approaches such as classification, regression, dimensionality reduction or density estimation.  
Both unsupervised and supervised learning strategies have been used to estimate the 
function f. In unsupervised data-driven learning, the image segmentation is solved by 
exploiting some image features such as latent patterns in the voxel intensity distribution. Such 
methods are in the family of generative learning and include data clustering or density 
estimation methods. On the other hand, supervised learning techniques require a training set 
including labelled samples from which algorithm can learn. This is known as discriminative 
learning. Most common applications exploiting discriminative learning are classification and 
regression problems. Voxel-wise classification methods are most commonly used for 
segmentation.  
 

2.4.1. Generative learning 



Generative-based approaches are widely used for image segmentation as they require few 
user interactions. Among generative models, clustering algorithms partition the feature space 
of an image into clusters, which correspond to data having a certain level of similarity or 
distance function. The number of clusters need to be determined. One of the most widely 
used clustering algorithm is K-means, which, in its original form, uses the Euclidean distance 
as a distance metric and variance as a measure of cluster scatter. K-means tend to obtain 
clusters of the same size. Fuzzy C-Means (FCM) is a soft version of K-means that relaxes the 
constraint that a voxel may belong only to one cluster by using the membership function 68,69. 
Carballido-Gamio et al. used a classical intensity-based fuzzy clustering method for trabecular 
bone segmentation with MRI 70. The method assigned a partial membership to each voxel 
based on the distance between image point intensities from the centroid of the cluster which 
accounted also for partial volume effects. Folkesson et al. extended the work of Carballido-
Gamio et al. by including, in addition to signal intensity, a local bone enhancement feature 
70,71. This approach allowed the method to account for partial volume effects, noise, and to 
some extent also for signal intensity inhomogeneity. They showed the performance of their 
method in terms of reproducibility, correlation with high-resolution peripheral quantitative 
CT, as well as the ability to detect fractures.  
 

2.4.2. Discriminative learning 
Supervised voxel-wise classifiers are based on a training dataset from which each voxel is 
assigned to a specific class. A challenging aspect of these methods is knowing which is the 
best set of image features for segmentation, including intensity, texture, or gradients. There 
is a wide family of classifiers proposed in the literature. However only few have been applied 
to the musculoskeletal system. The K-nearest neighbor (KNN), Support Vector Machines 
(SVM) and Random Forests (RF) have been most widely used as they have shown promising 
results in solving different classification problems in other research fields 72,73.  
Folkesson et al. presented a fully automatic method for the segmentation of knee cartilage 
with MRI based on a KNN classifier 72. Their method was evaluated by comparisons to manual 
segmentations by a radiologist and by examining the inter-scan reproducibility of the volume 
and area estimates. 139 scans of knees with varying degree of disease were used for training 
and testing, showing good agreement with manual segmentation, and interscan 
reproducibility as good as that of a human expert. 
 

2.4.3. Deep learning architectures 
Recently, machine learning research has focused on the use of the learning procedure to 
define a better transformation of raw data into a representation that can effectively 
accomplish the assigned task. In other words, the feature engineering task is left to the 
machine learning algorithm. Deep learning is one of the many approaches to machine 
learning, but contrary to the shallow learning methods reported above, deep learning is 
focused on learning data representations 74. It is based on artificial neural network 
architectures, including many layers of neurons (more than three layers). Each layer learns a 
specific feature, such as curves or edges in the image. Moreover, deep learning methods are 
more scalable than other machine learning techniques, meaning that their performance 
increases significantly with increasing training data. 
 



Deep learning algorithms have been applied to musculoskeletal imaging for segmentation and 
identification of bone and associated soft tissue abnormalities using various imaging 
modalities 19,75. 
Prasoon et al. presented a novel method for voxel classification of knee cartilage MRI, 
integrating three 2D Convolutional Neural Networks (CNNs) 76. They tested their method on 
the tibial cartilage in low-field knee MRI scans. They showed improved results with their 
method in comparison to a reference machine-learning method in terms of the Dice similarity 
coefficient 72. 
Recently, Liu et al., presented a fully automated segmentation pipeline to segment knee bone 
and cartilage, combining a semantic pixel-wise segmentation CNN and 3D deformable 
modeling to preserve the overall shape and maintain a desirable smooth surface of the 
structures 77. They tested their approach in three different datasets of 100, 60 and 100 
patients respectively, including different MR sequences and vendors. They showed superior 
performance to state-of-the-art image processing-based methods 78.  
One of the main limitations of supervised methods is the fact that they depend on the 
existence of a large quantity of good quality of labeled data, which requires a large amount 
of resources to be obtained, particularly in the medical image domain. This is particularly 
important in the deep learning domain in order to avoid overfitting, that is, the inability of 
the classifier to generalize the segmentation to unseen images. 
 
 
3. Radiomics 

3.1. The radiomics pipeline 
There are essentially two types of pipelines for radiomics: the conventional or deep learning 
approaches. The conventional pipeline consists of multiple steps including image acquisition, 
image segmentation, extraction and selection of handcrafted features, data integration, 
analysis and model building (Figure 1). In the deep learning pipeline, all the steps after the 
acquisition of images can be left to neural networks. 
 

3.1.1. Conventional radiomics  
Following is a brief description of each of these steps, including some related challenges and 
difficulties. 
 

3.1.1.1. Image acquisition 
Radiomics can use any type of imaging sources, although most commonly applied to cross-
sectional modalities, including computed tomography (CT), magnetic resonance imaging 
(MRI), and Positron emission tomography (PET). 
Because of the major influence of acquisition and image reconstruction parameters on the 
image aspect (Figure 8), the performance of radiomics feature extraction heavily depends on 
this step of the process 79,80. The consistency of feature extraction needs to be addressed for 
different acquisition protocols, reconstruction parameters, and different scanners 10,81.  
Pre-processing of the imaging dataset may be performed prior to segmentation in order to 
reduce noise and artefacts. 
 

3.1.1.2. Image segmentation 
Image segmentation is a fundamental step in the radiomics pipeline and may use any of the 
methods developed in section 2, alone or in combination. 



 
3.1.1.3. Feature extraction and selection 

Typical features that are extracted in this process include first-order feature (such as 
morphological measures (size and shape) and signal intensity), as well as second-order 
features (which describe the relationships between image pixels or voxels, referred to as 
texture features, commonly used to assess tumor heterogeneity for instance) 11,82,83. Higher-
order features can also be extracted from the images. For example, the use of filters (such as 
wavelet transforms, or fractal analyses) allow the extraction of patterns from the images 6. 
Virtually an unlimited number of features could be extracted from an image, many of which 
are redundant, irrelevant, or contribute to over-fitting of the model later used for data 
integration. Therefore, an important step of the pipeline consists in the selection of a subset 
of features that will allow appropriate predictions (Figure 9) 84. This process, called feature 
selection, can be done using either supervised or unsupervised techniques. In supervised 
techniques, features are selected based on their relevance for the outcomes of interest: the 
features that best classify or predict labeled data are selected. Unsupervised techniques aim 
mainly at removing redundant features, without considering the outcomes of interest 11. 
Common approaches include clustering and principal component analysis (these techniques 
belong to the family of generative machine learning, please refer to section 2.4.1 for further 
details) 81. Feature selection may be performed in conjunction with the next step, which is 
data integration, analysis, and model building. 
 

3.1.1.4. Data integration, analysis and model building 
In this step, image features are integrated with other types of patients’ data in order to 
build models. Any type of information may be considered, including clinical, genetical, or 
biological (such as blood biomarkers, or histopathological) information. The models built 
may have a variety of applications that can be categorized as clustering, classification and 
time-related analysis (survival analysis). The methods used for the analysis depend on the 
task at hand, ranging from statistical methods to data-mining and machine-learning 
approaches. Some commonly methods used for classification include Random Forests, 
support vector machine (SVM), neural networks, generalized linear models, naive Bayes 
algorithm and least shrinkage and selection operators (LASSO) 11,85. Methods used for 
survival analysis include Kaplan-Meier survival analysis, Cox proportional hazards regression 
models and log-rank tests11. The models built through this process may be used as decision-
making support, for example to diagnose a condition, stage a tumor, or predict patient 
survival or treatment response.  
 

3.1.2. Deep learning-based radiomics  
Deep learning methods have the advantage of bypassing the difficulties related to the 
segmentation and feature selection steps of the conventional radiomics pipeline, potentially 
increasing reproducibility. They have minimal reliance on user input, and feature extraction 
and selection happen automatically within a convolutional neural network. In theory, deep 
learning allows more complex and generalizable architectures to be built 10. Their 
performance can further increase with more training samples. Disadvantages include high 
computational cost and the requirements for large volumes of training data 11.  
 

3.2. Radiomics literature: general considerations and musculoskeletal applications 
 



While many research studies have shown the potential of radiomics to help decision-
making, especially in oncology, radiomics is still an emerging field, where translation into 
clinical practice has been slow. In particular, the scientific quality and quality of reporting 
were found to be yet insufficient 86. While guidelines for scientific quality and quality of 
reporting exist (including the radiomics quality score (RQS), the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis and Diagnosis (TRIPOD), Image 
biomarker standardization initiative (IBSI)), few papers comply with these guidelines 8,87,88. 
Areas where improvement is particularly needed include the analysis of feature 
reproducibility, the validation of models in prospective studies, and the assessment of 
clinical utility 3,86. The use of phantom studies is essential to assess the inter-scanner and 
inter-vendor variability of features 8. Validation of a model in terms of reproducibility and 
performance is a particularly important aspect of the assessment. While most studies use 
internal cross-validation, prospective studies with independent cohorts are the ideal 
scenario, although very few studies have so far achieved such a high level of evidence 86. 

 
The applications of radiomics to musculoskeletal imaging are particularly scarce. Out of 77 
scientific papers containing the terms “radiomics” and “radiogenomics” published until 
December 2018 in high-impact clinical journals (with an impact factor ≥7) (n=25) and those 
published in top imaging journals (Radiology and European Radiology) (n=52), only one 
pertained to musculoskeletal imaging (focusing on sacral tumors) 85,86. It is to note that 70 
out of these 77 papers were focusing on oncological applications (mainly lung, brain, 
digestive and breast cancers) 86. 
Most studies were performed with small sample sizes and lacked proper validation, among 
other limitations. Therefore, they should be considered as feasibility studies in an emerging 
field of research. 
 
Opposite to other imaging subspecialties, only a few studies have focused on oncological 
applications of radiomics in musculoskeletal imaging. Examples include a study by Yin et al. 
that aimed at developing and validating a classification model for the preoperative 
differentiation of three sacral tumors (chordoma, giant cell tumor, and metastatic tumor), 
nicely illustrating the conventional radiomics pipeline. First, image acquisitions included T2-
weighted fat-suppressed (T2w FS) and contrast-enhanced T1-weighed (CE T1w) MRI on 120 
patients presenting with one of the three tumors. Eighty-three exams were assigned to the 
training set, and 37 to the validation set. The study was retrospective, but acquisition 
parameters were standardized. Second, sacral tumors were manually segmented, and 
interobserver agreement tested. Third, 385 radiomics features were extracted for each 
examination, including first- and second-order (texture) features. Fourth, feature selection 
was performed using ANOVA and Pearson correlation statistics, as well as LASSO regression 
and Random Forest (RF). Fifth, the model was built with the ten most significant features, 
using RF. Sixth, the model was validated using receiver operating characteristic (ROC) curve 
and accuracy analysis. In the training set, the best performance was based on joint T2w FS 
and CE T1w sequences, with an area under the curve (AUC) of 0.773 and an accuracy of 
0.711, although the performance was more moderate in the validation set (0.643 and 0.649 
for the AUC and accuracy, respectively). Interestingly, the performance of radiomics was 
superior to the performance of imaging data integrated with clinical data.  
Another paper by Zhang et al. aimed at developing a radiomics model for predicting the 
histopathological grades of soft tissue sarcomas preoperatively, with MRI. Over 1000 



features were extracted from T2w FS sequences in 35 MRI exams retrospectively included. 
Tumors were manually segmented (but the interobserver agreement was not assessed). 
Feature selection was made using LASSO. Models were build using three machine learning 
algorithms: RF, k-nearest neighbor and SVM. Five-fold cross-validation of the model was 
performed. A model using five texture features showed high performance in differentiating 
low- and high-grade soft tissue sarcomas (AUC of 0.92 and accuracy of 0.88). 
Hayano et al. showed in 20 patients with soft tissue sarcoma treated with neoadjuvant 
bevacizumab and radiotherapy that texture features extracted from non-contrast-enhanced 
CT were correlated with neoangiogenesis and survival. Another paper by Yi et al. showed 
that first-order and texture features on CT could be used to assess response to denosumab 
therapy in patients with giant-cell tumors of bone 89. 
As with most studies currently available, these papers suffer from common limitations, 
including small sample size, heterogeneity in image acquisition parameters, and the lack of 
external validation, impeding their generalizability.  
 
Apart from oncology, machine learning applications for quantification tasks have also gained 
interest in the fields of osteoporosis and cartilage research. 
A recent review paper has focused on the applications of machine learning to osteoporosis 
90. A PubMed/Medline search for papers on bone/ fracture/ osteoporosis and artificial 
intelligence/machine learning/deep learning, published from January 2017 to March 2019 
was performed. They retrieved fifteen studies, most of which aimed at predicting 
osteoporotic fractures or at diagnosing osteoporosis. While some studies used radiomics 
features such as texture analysis from CT or X-rays to predict the risk of fracture, three large 
cohort studies used machine learning to predict the risk of fracture in osteoporotic patients 
using different clinical parameters combined with quantitative DXA imaging results 91–97. 
Another paper used high-order radiomics features (fractals) extracted from radiographs to 
assess response to denosumab treatment in postmenopausal osteoporotic patients 98. 
While these studies illustrate promising applications of machine learning, some limitations 
need to be addressed before translating into clinical practice. These limitations include small 
sample sizes for most studies, the lack of external validation, and some issues with the 
performance metrics used, such as failure to report the rate of false negatives for screening 
studies 90. 
 
In the field of osteoarthritis, cartilage volume and thickness measurements represent 
natural biomarkers of the disease and have been extensively studied for the last decades, 
mostly through manual image segmentation. As seen in section 2, a large body of work has 
aimed at automatizing cartilage segmentation, which has remained a challenging task for 
years. However, atlas-based methods and deep learning approaches have opened new 
possibilities to perform this task successfully 99,100. These novel methods could be applied to 
compositional MRI techniques such as T2 mapping to automatize the extraction of 
quantitative data. As an example, features such as texture extracted from T2 maps have 
shown their potential to provide prognostic information on the development of OA 101. 
Furthermore, different methods have been proposed to analyze the local variations of the 
quantitative data obtained from cartilage across patients, or longitudinally in the same 
patients, bringing valuable spatial information on the patterns of changes occurring with the 
disease 102,103. Although cartilage remains the hallmark of the disease, osteoarthritis is now 
largely considered as a condition affecting the whole joint, where all intra-articular tissues 



including menisci, ligaments, bones, and synovium are involved. The interactions among 
knee structures, and between these structures and other factors involved in osteoarthritis 
are not fully understood, and there is a need for a multivariable assessment of imaging-
derived quantitative data, integrated with other patient-derived information, including 
mechanical and genetical information 104,105. Analytical tools offered by machine learning 
provide an excellent opportunity to perform such analyses to advance in our understanding 
of osteoarthritis. 
 
 
In conclusion, the use of quantitative analyses has been slow in translating into the clinical 
practice of musculoskeletal imaging, despite the general agreement that it increases the 
value of imaging examinations. This is at least partly due to the difficulties posed by image 
segmentation, which is a crucial step in the processing pipeline for extracting quantitative 
information from regions of interest in the image. Progress has been slow in automatizing 
this task, and segmentation remains challenging. However, atlas-based methods and deep 
learning approaches have recently shown promising results. 
The next step of the radiomics pipeline consists of features extraction, leading to virtually an 
infinite number of features that may be analyzed in association with other non-imaging-
derived information to build decision-making models. Musculoskeletal imaging has been 
lagging behind other subspecialties as to the adoption of radiomics, as shown by the 
literature. Apart from oncology, imaging of osteoporosis and osteoarthritis will most likely 
be the first to benefit from these new tools. 
Overall, radiomics is still an emerging field, where the models that are generated still need 
to be validated following high-quality standards, which should lead radiomics to become a 
viable decision-making tool in the future. 
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Figures and figure legends 
 
 

 
Figure 1: Image quantification analysis workflow and conventional radiomics pipeline. The 
first step of the process is image acquisition (in this case CT arthrography). Second, images 
are segmented to isolated regions of interest (ROI) (tibial cartilage and bone in this case). 
Quantitative information, called radiomics features, are extracted from the ROIs (here 
morphological freatures including cartilage volume and thickness, first-order features (signal 
intensity) and second-order features (bone texture)). The extracted radiomics features are 
then integrated with other information derived from the patient including clinical, genetical, 
or biological data. Data analysis is performed to build diagnostic, prognostic or predictive 
models. 
 
 

 
Figure 2: Overview of the different segmentation methods. Methods are grouped into four 
families (basic, model-based, graph-based and machine learning-based techniques (from 
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top to bottom rows)). The horizontal axis represents their increasing complexity and/or 
chronology of adoption by the medial image community. 
KNN: K-nearest neighbor, SVM: Support Vector Machines. 
 
 

 
Figure 3: Contour extraction using different edge-detector filters. (a): original T2-weighted 
sagittal MRI image of the spine. (b): image filtered based on the first derivative of the image 
intensity (Sobel). (c): image filtered based on the second derivative of the image intensity 
(Laplacian of Gaussian). Note the differences in edge detection between (b) and (c). 
 
 

 
Figure 4: Watershed segmentation for two different pre-processing approaches. A) Original 
MRI intensity. (b1) Magnitude of intensity image and (c1) watershed transform of (b1) 
illustrating many regional minima, forming tiny catchment basins, resulting in 
oversegmentation problem as illustrated in (d1). (b2) Another pre-processing approach 
based on mathematical morphology to remove regional minima. A distance map of (b2) is 
then computed and used as input for the watershed transform, as illustrated in (c2). The 
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final segmentation contains well-distinguished segments for the vertebra, and the non-
desired bigger regions can be easily identified and removed with post-processing. 
 
 

 
Figure 5: Active contour segmentation 106. (a) Original sagittal T2-weighted MR image of the 
cervical spine. (b) The image is preprocessed based on region homogeneity. One initial 
closed contour (or snake) is placed per structure to be segmented. (c), (d) and (e) represent 
the snake evolution at iterations 46, 92, and 200 respectively. (f) Overlay of the final 
segmentation on the original MR image. 
 
 

 
Figure 6: Statistical shape model (SSM) segmentation of the knee bone and cartilage. (a) A 
statistical shape average model is built from several manually segmented image sets. Initial 
global positioning of the average shape can be done via point-based registration. (b) Local 
adaptation of the SSM is performed based on both contours and intensity profiles across bone 
contours. (c) Finally, label propagation of cartilage is applied. 
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Figure 7: Atlas-based segmentation. Image registration is performed between the atlas 
image and the input image to be segmented. Point to point spatial correspondence is often 
done using voxel-wise volume registration between the two gray-level images (atlas and 
input image). The image registration consists in a combination of global alignment (rigid and 
affine transformations) and a local non-rigid deformation. This spatial transformation is then 
applied to the labeled image and the label is propagated to the input image, giving the 
segmented image. 
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Figure 8: Influence of acquisition and reconstruction parameters on image aspect, hereby 
potentially affecting segmentation and feature extraction. (a-c) Axial CT of cadaveric spine 
shows decreasing levels of radiation dose, associated with increased image noise and 
artifacts 79. (d-f) Axial CT of cadaveric spine shows the influence of different reconstructions 
algorithms on image noise and texture 80. 
 
 

 
Figure 9: Correlation matrix used for radiomics feature selection. Correlation coefficients 
are color-coded (according to the scale on right side) and displayed for each pair of 
radiomics features (A to G). Highly correlated features are redundant and are grouped in (A 
and B are highly correlated in this example). One feature is chosen to be representative of 
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each cluster. Note that only seven features were included in this matrix for sake of 
simplicity, but correlation matrices may contain a much higher number of features. 


