Exploration of Scenario-based Simulations for Stress Benchmarking in Swiss Public Service
Détails
Télécharger: SERVAL_text_sds2020.pdf (396.91 [Ko])
Etat: Public
Version: Final published version
Licence: Tous droits réservés
Etat: Public
Version: Final published version
Licence: Tous droits réservés
Document(s) secondaire(s)
Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
Accès restreint UNIL
Etat: Public
Version: de l'auteur⸱e
Licence: Non spécifiée
ID Serval
serval:BIB_88E1D53F5E09
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Exploration of Scenario-based Simulations for Stress Benchmarking in Swiss Public Service
Titre de la conférence
2020 7th Swiss Conference on Data Science (SDS)
ISBN
9781728171777
Statut éditorial
Publié
Date de publication
21/07/2020
Peer-reviewed
Oui
Langue
anglais
Résumé
Statistical interpretation of stress-related indicators collected through wearable biosensors often relies on benchmarking, especially in the context of stress management interventions. However, it remains unclear how to construct stress level benchmarks for group stress-related indicators using limited historical data. This study examines whether the method of numerical simulation of stress-related responses could contribute to constructing benchmark curves. Experimental data consists of physiological and non-physiological signals of 18 Swiss public servants collected through wearable biosensors. This study draws upon Stress Pattern Recognition algorithm and Markov Chain modeling for simulating emotional responses according to specified data-driven scenarios of high and low stress. Proposed method allows constructing benchmark curves for an Overarousal Index. Results demonstrate that numerical simulation based on small datasets can be used effectively for constructing stress level benchmarks. The findings contribute to methodological knowledge in statistical learning on Stress Pattern Recognition algorithms and Markov Chains modeling by expanding their application to a new field of emotional response simulation according to scenarios.
Mots-clé
Numerical simulation, Markov chains, Bootstrap, Benchmark, Biosensor, Wearables, Stress, Electronic stress management, Organization, Swiss public administration
Financement(s)
Fonds national suisse / Projets / 2017-172740
Création de la notice
10/08/2020 22:48
Dernière modification de la notice
21/11/2022 9:20