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Abstract — Statistical interpretation of stress-related 

indicators collected through wearable biosensors often relies on 

benchmarking, especially in the context of stress management 

interventions. However, it remains unclear how to construct 

stress level benchmarks for group stress-related indicators using 

limited historical data. This study examines whether the method 

of numerical simulation of stress-related responses could 

contribute to constructing benchmark curves. Experimental  

data consists of physiological and non-physiological signals of 18 

Swiss public servants collected through wearable biosensors. 

This study draws upon Stress Pattern Recognition algorithm 

and Markov Chain modeling for simulating emotional 

responses according to specified data-driven scenarios of high 

and low stress. Proposed method allows constructing 

benchmark curves for an Overarousal Index.  Results 

demonstrate that numerical simulation based on small datasets 

can be used effectively for constructing stress level benchmarks. 

The findings contribute to methodological knowledge in 

statistical learning on Stress Pattern Recognition algorithms 

and Markov Chains modeling by expanding their application to 

a new field of emotional response simulation according to 

scenarios.  

Keywords — Numerical simulation, Markov chains, bootstrap, 

benchmark, biosensor, wearables, stress, electronic stress 

management, organization, Swiss public administration 

I. INTRODUCTION 

Supporting psychological well-being and decreasing stress 
in the workplace is important for achieving optimal 
productivity. Stress could be particularly detrimental to 
performance, and organizations are increasingly use short-
term stress management interventions for averting its negative 
consequences and well-being promotion. Timely 
identification of stress as well as benchmarking, or 
comparison between normal and actual stress state, are 
necessary to support decision-making on stress management. 

Physiological and non-physiological signals can serve as 
foundation for remote algorithm-based stress pattern 
recognition. However, there is a methodological gap in the 
literature concerning construction of benchmark curves in the 
presence of limited datasets. Random process-based 
numerical simulation might contribute to constructing 
benchmark curves for stress monitoring, when the historical 
data is limited. It widely draws upon Monte-Carlo methods. 
They represent an integral part of Markov Chains Monte Carlo 

methods (MCMC) and dynamic simulation modeling methods 
comprising system dynamics, discrete-event simulation and 
agent-based modeling [1]. MCMC serves to approximate 
distribution of parameters of interest by random sampling 
from a target probability density function [2]. These methods 
have applications across different domains. For instance, 
MCMC is widely used in computer-based simulation of 
experiments in physics in order to understand phase transition 
and other physical behaviors [2]. Theoretical chemistry 
simulates chemical reactions through MCMC[3]. MCMC 
method is also used in DNA sequence simulation and analysis 
[4]. Other application domains of MCMC include finance [5], 
meteorology [6], biology [7], and engineering [8].  

Current study addresses the literature gap on benchmarks 
for stress pattern recognition with limited historical data by 
suggesting MCMC simulation for the construction of stress-
related benchmark curves. Accordingly, this study addresses 
the following research question: could numerical simulation 
through MCMC and bootstrap methods contribute to stress 
benchmarking in the workplace? This research is conducted in 
the context of Swiss public administration where 
psychological well-being of public servants is a core public 
value. Interestingly, highly motivated public employees are 
likely to suffer from stress more that those without motivation, 
according to the research conducted in Swiss public service 
[5].  The aim of this research is to explore whether numerical 
simulation can be used to develop stress-related benchmarks 
with small datasets in the workplace, using the data on fiscal 
office workers from Switzerland, 

II. REMOTE STRESS IDENTIFICATION  

Stress is defined as a relationship between an individual 
and an environment appraised as taxing or exceeding 
resources under control, thus threatening personal well-being” 
[6]. According to this definition, the concept of arousal is 
critical for stress identification. Arousal level represents a 
capacity that an individual disposes to perform tasks [7]. It can 
vary according to low, mid, and high level. According to the 
Yerkes-Dodson law explaining the relationship between 
arousal and performance [7], very low arousal levels can lead 
to inertia, boredom, dissatisfaction, and reduced performance. 
Mid-level arousal supports optimal performance, extends the 
length of progress, prepares for change, and boosts creativity. 
Arousal can exceed mid-level, when individual performs 
cognitive or physical tasks. When arousal reaches very high 
level or stay at high level for a prolonged period of time, it 
refers to the state of Overarousal. An overaroused individual Acknowledgment: This research has been supported by the Swiss 
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is highly likely to experience stress, profound and long-lasting 
decline of performance.  

Stress pattern recognition involves supervised or 
unsupervised machine learning approaches [8, 9] Selection 
between these two approaches depends on the study context 
[10]. Previous research has confirmed that machine learning 
algorithms can identify stress or stress-relates states. 
Statistical learning studies on SVM-kNN [11], LDA [12], 
Convolutional Neural Networks [13], Logistic regression [14] 
and other algorithms show high predictive accuracy of stress-
related classification, frequently exceeding 70% [10]. 
Controlled laboratory conditions provide higher level of 
accuracy, compared to the workplace or daily life setting.  

In the workplace setting, sensorial signals allowing to 
identify stress-related patterns are collected during brief time 
periods of remote stress monitoring. Remote stress 
identification using algorithms is based on sensorial 
physiological and non-physiological signals. Emitted signals 
reflect transitions between various emotional states that 
individuals may have over time. Most commonly used 
physiological signals include Galvanic Skin Response (GSR), 
Heart Rate (HR), Respiratory Rate (RR). Typically, such data 
is collected in organizations during short interventions. 

Construction of stress-related benchmarks based on 
sensorial signals is one of morbidity (dysfunction) tracking 
practices, which raises challenges from statistical 
methodology perspective. First, stress patterns would not be 
“typical” or the same across different work environments. 
Stress levels may vary across activity sectors, occupations, 
and job positions. For example, normally experienced stress 
level would differ for fiscal office workers and police officers, 
and manager are likely to experience higher stress than line 
workers. Second, benchmarks could be time-dependent. 
Third, they may exhibit seasonality influence, because a job 
could commonly require to work intensively at some periods, 
but not at others. Thus, benchmark curves may change over 
time. Fourth, they may also incorporate stochastic variance. 
For addressing these and similar methodological issues, 
morbidity tracking practices frequently rely on large temporal 
series spanning over months, years or even decades [15, 16].  

While morbidity tracking requires large time series, 
workplace stress monitoring typically consists of short time 
series based on data collected during context-specific 
workplace stress monitoring. In some cases, time horizon of 
sensorial data collected through wearable devices spans only 
over several months. There is a gap in statistical 
methodological literature regarding construction of stress-
related benchmark curves with limited historical data, and our 
study aims to address this research problem.  

III. RESEARCH METHODS 

 Present study on remote stress pattern recognition aims to 
expand methodological knowledge on  data pre-processing 
under conditions of limited longitudinal data availability  [17].  
Current research follows several steps. They include (1) data 
labeling with Gaussian Mixture Model (GMM); (2) data-
driven scenario formulation with block bootstrap; and (3) 
numerical simulation with Markov Chain Model.  

 First, we use GMM for labeling stress-related features 
according to several classes: Relaxation (R), Arousal (A) and 
Overarousal (O). The resulting data presents sequential 
realizations of those 3 classes. For example, ‘RRRAAAO’ 

represent sequential chain realization where R transits to A at 
time 4 and transits to O at time 7. Methodological procedures 
for GMM are well established in the literature [18, 19].  

 Second, we make a block resampling of consecutive 
emotional episodes from labeled dataset. We define 
resampling units as class 𝑖  realizations before transiting to 
another class 𝑗, according to the original data structure.  For 
example, dataset “RRRRAAOO” has three resampling units: 
“RRR” is a first unit, “AAA” is a second unit and “OO” is a 
third unit. Then, for each sample, we count the amount of 
transitions, i.e. transition frequencies, from one class (𝑐𝑖) to 
another class (𝑐𝑗) that we denote as path: 𝑐𝑖𝑗 . We also count 

number of realizations excluding transitions from one class to 
another. It corresponds to realizations when chain remains in 
the same class that we denote as 𝑐𝑖𝑖 . Accordingly, addition of  
paths 𝑐𝑖𝑗  and 𝑐𝑖𝑖 , ∀ 𝑖, 𝑗 ∈  {𝑅, 𝐴, 𝑂} yields a total number of 

realizations in data sample. We obtain distributions of each 
path through a resampling procedure. Bootstrap distributions 
of the biggest path 𝑐𝑅𝑅 will further serve to develop scenarios 
called “High Stress” and “Low Stress”.  

 Third, we perform Markov Chain simulation of 
benchmark curves under scenarios of high and low stress. 
Next, we display them against “Overarousal” index. 
Therefore, we introduce a block bootstrap method and 
Markov Chain model further in this section. 

A. Block Bootstrap 

Bootstrap refers to a general resampling procedure for 
estimating sampling distributions which is approximate and 
conditional on the observed data [20]. The algorithm 
corresponds to drawing a large number of bootstrap samples, 
𝑦∗(1), 𝑦∗(2), … , 𝑦∗(𝐵). We evaluate a statistic of interest for 

each sample 𝜃̂∗(𝑏) = 𝜃̂(𝑦∗(𝑏))  for 𝑏 = 1,2, … , 𝐵 , which 

compose a distribution [21]. We estimate the sampling 
distribution for general stationary observations, using a block 
bootstrap [3, 22].  Observations well separated in time are 
assumed to be nearly uncorrelated, and time series of length 𝑛 
can be factored as 𝑛 = 𝑏 ∙ 𝑙, where 𝑏 and 𝑙 are integer, and 𝑙 
should be large enough to retain correlation structure. We 
apply block bootstrap resampling to sequential data with 
inhomogeneity regions in Stationary Categorical Time Series 
[23].  We model a sequence of stress-related conditions as a 
Markov process with irreducible transition matrix, 
corresponding to a stationary process.  

Also, the sequence contains inhomogeneity regions. For 
example, exploratory data analysis shows that work period in 
the beginning of November is calmer than end of November – 
mid of December. The latter period may correspond to high 
work intensity in fiscal office when it is time to finalize annual 
accounting reports. For this reason, we use a block bootstrap 
with at least two blocks in order to estimate the distribution of 
transition frequencies between stress-related states. Thus, we 
define four equally spaced regions for random sampling with 
replacement consisting in 100 samples per block and 
accounting for 80% of observations at each sampling: 𝑏 = 4, 
𝑙 = 3533,  𝑛 = 𝑏 ∙ 𝑙 =  14′132. 

B. Markov Chain Model 

Markov chain is a model generating sequential output, 
characterized by a set of states 𝑄, emitting symbols and a set 
of transitions between states [19]. Each transition between 
states has corresponding transition probability 𝑝𝑖𝑗 . It 

represents a conditional probability of going to state 𝑗 in the 



next step from state 𝑖  in current step. Sum of transition 
probabilities at state j equals to 1, ∑ 𝑝𝑖𝑗𝑗 = 1, for all j ∈ 𝑄 

[19, 24]. First-order Markov process is a random process 
{𝑋(𝑡), 𝑡 ∈ 𝑇}, 𝑡𝑜 < 𝑡1 < ⋯ < 𝑡𝑛, if in any time 𝑡 conditional 
CDF of 𝑋(𝑡𝑛)  depends only on 𝑋(𝑡𝑛−1)  given values of 
𝑋(𝑡0), 𝑋(𝑡1), … , 𝑋(𝑡𝑡−1) [20, 24], presented as follows [24]: 

 𝑃[𝑋(𝑡𝑛) ≤ 𝑥𝑛|𝑋(𝑡𝑛−1) ≤  𝑥𝑛−1, . . . , 𝑋(𝑡0) ≤ 𝑥0] =
𝑃[𝑋(𝑡𝑛) ≤ 𝑥𝑛|𝑋(𝑡𝑛−1) ≤  𝑥𝑛−1]                                        (1)                  

A distribution 𝑝∗(𝑥) corresponding to a random process 
{𝑋(𝑡), 𝑡 ∈ 𝑇}  is stationary, when each step in the chain leaves 
this distribution invariant [18]. When all states in chain 
communicate, this chain is irreducible [24]. If time Markov 
chain is finite, irreducible and discrete it has a unique 
stationary distribution [25]. In order to estimate transition 
probabilities, we estimate the following ratio [19]: 

𝑝𝑖𝑗 =
𝑐𝑖𝑗

∑ c𝑖𝑘𝑘
                                              (2) 

where cij refers to the number of times that class 𝑗 follows 

class 𝑖 , representing an absolute frequency. Further, 𝑐𝑖𝑗  is 

normalized by the sum of transitions 𝑖 over 𝑘, which is ∑ 𝑐𝑖𝑘𝑘 . 

We model our data as a sequential realization of classes, 
labeled as follows: Relaxation (R), Arousal (A), and 
Overarousal (O) observed over time 𝑡. Correspondingly, 𝑖, 𝑗 ∈
{𝑅, 𝐴, 𝑂}, 𝑘 = 3. Transition probabilities from one state to 
another can be estimated with 𝑝𝑖𝑗 coefficient, where 𝑐𝑖𝑗   will 

correspond to absolute frequency of passing from condition 𝑖 
to condition 𝑗 . Normalization constant corresponds to 
summing absolute frequencies over all possible states.  

We retain first-order Markov Chain process, because 
principle feature of emotional arousal used in this study, 
Galvanic Skin Response (GSR), exhibit strong and positive 
auto-correlation (AR) pattern with highly pronounced first-
odder component according to the output of AR(15) model.  

IV. STUDY PARTICIPANTS  

Sensorial data was collected during study in Municipal 
Fiscal Administration Office in Switzerland. Experimental 
timeline was determined in coordination with the Office 
management. Research team distributed consent forms among 
potential participants. Individuals that gave formal consent 
were recruited. Sample of 18 participants includes 6 males and 
12 males working across 7 different departments. The biggest 
departments were “Construction Management”, “City 
Chancellery” and “Tax Office”, where the latter comprised 7 
participants. Participants wore biosensor devices in the 
workplace for approximately 2 months from 1.10.2018 to 
18.12.2018. It involved periods of low and high work intensity 
in order to ensure sufficient variability in stress-related 
physiological response. According to the research 
assumptions, first half of November may be calmer compared 
to the end of November – mid of December, when the burden 
of finalizing accountability increases in Tax Office.  

V. DATA AND MEASUREMENT  

This study uses experimental observations from wearable 
devices, also called wearables. Biosensors integrated in 
wearables continuously collect data on physiological signals 
of research participants. Each extracted feature consists of 60 
seconds of averaged GSR and Heart Rate (HR) and Motion 
Activity (MA) without overlap. 

VI. NUMERICAL SIMULATION PROCEDURES 

A. Data labeling with GMM  

We fit a 3-Dimensional Gaussian Mixture Model (GMM) 
with standardized GSR, HR and MA features (Fig. 1). We 
identify clusters corresponding to the state of R, A and O. 
Next, we label input features accordingly, in line with 
previous research [17]. 

 
Fig. 1. Gaussian Mixture Model with 3 clusters in 3D 

B. Data-Driven Scenario Formulation 

Stationary categorical series contain inhomogeneity 
regions, described earlier. Consequently, we apply a block 
bootstrap for estimating the distribution of unnormalized 
transition frequencies 𝑐𝑖𝑗 , i.e. transition counts in each sample. 

Figure 2 shows a mixture distribution of path 𝑐𝑅𝑅. In line with 
previous classification analysis [17], R is a most frequent state 
of individuals. Changes in the density of R episodes 
correspond to the changes in emotional states of users. Some 
device users remain in phase R for longer time in periods of 
lower stress and work intensity; accordingly, they transit from 
state R to state O and A less frequently. Other device users 
remain in phase R for shorter time in periods of high higher 
stress and work intensity; as a result, they transit from R to O 
and A more frequently. Therefore, observations grouped 
around 0.25 and 0.75 quantile lines, may correspond to “low 
stress” and “high stress” transition frequencies ( Fig. 2). 

 

Fig. 2. Distribution of transition frequncies 𝑐𝑅𝑅 with jittering 

We develop low stress and high stress scenarios (Table 1). 
We assume that under High Stress Scenario users spend less 
time in state R, then transition frequencies to state R from all 
other states are reduced. In parallel, users transit more 
regularly to state O from other states. In Low Stress Scenario, 
users spend more time in state R. So, transition frequencies to 
state R from all other states are increased. At the same time, 
users transit less regularly to state O from other states. Low 
frequency values of R episodes may be concentrated around 
0.25 quantile line, and high frequency values of R episodes 
may be concentrated around 0.75 quantile line (Fig. 2). 
Therefore, we assume that 0.25 quantile marks the decreased 



path frequency, 0.75 quantile marks the increased path 
frequency while mean of bootstrap distribution reflects typical 
transition frequency.  

TABLE I.  SCENARIO FORMULATION 

Path Frequency 
Stress Pattern Scenarios 

High Stress  Low Stress 

𝑐𝑅𝑅 q0.25 q0.75  

𝑐𝑅𝐴  mean mean 

𝑐𝑅𝑂  q0.75 q0.25 

𝑐𝐴𝑅  q0.25  q0.75 

𝑐𝐴𝐴  mean  mean 

𝑐𝐴𝑂 mean  mean 

𝑐𝑂𝑅  q0.25  q0.75 

𝑐𝑂𝐴 mean  mean 

𝑐𝑂𝑂 q0.75  q0.25 

 
Next, we estimate lower quartile, upper quartile and mean 

of absolute path frequencies, 𝑐𝑖𝑗 . Then, we compute 𝑝𝑖𝑗 

coefficient by weighting absolute frequencies according to 
their contribution to the class so that for any class 𝑖 , 
∑ 𝑝𝑖𝑗

𝑁
𝑗=1 = 1. Normalized frequencies corresponding to “Low 

Stress” scenario and “High Stress” Scenario are shown in 
Figures 3 and 4. Finally, we run stochastic simulations of 
stress-related states under distributional assumptions of High 
Stress and Low Stress Scenarios. 

 

 
 

 

 

 

 

Fig. 3. State Diagram for Low Stress Scenario 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 4. State Diagram for High Stress Scenario 

C. Numerical Simulation with Markov Chains   

We simulate benchmarks for “Overarosal” Index based on 

Markov Chain models under scenarios of Low Stress and 

High Stress. We consider 20 pseudo-users wearing devices 

over 31 days. We assume that transitions between states 

happen every minute and devices are active 8 hours per day. 

We generate 480 daily realizations, i.e. 60 min × 8 hours = 

480 realizations/day. Overall length of generated sequence is 

14880, i.e. 480 transitions/day × 31 days = 14’880 

transitions/month. Original features consist in non-

overlapping sliding-window average of 60 seconds (i.e. one 

per minute). In line with the original dataset characteristics, 

Markov Chain generates realization each minute deciding 

whether to transit to different state or remain at current state 

at every step.  

Next, we compute daily sum of "Overarousal" episodes for 

each pseudo-user, average it out, and construct simulated 

index of “Overarousal” (Fig. 5). The Red smoothed line 

shows collective “Overarousal” realizations under High 

Stress model scenario. Blue smoothed curve shows collective 

“Overarousal” realizations under Low Stress model scenario. 

Those curves may represent upper and lower thresholds in 

stress monitoring. Points around red and blue exponentially 

smoothed lines represent averaged daily outcomes per 

scenario. Black curve is a pseudo-index of “Overarousal” 

constructed by block resampling from original data (Fig. 5), 

considering 480 daily transitions for 31 days, and repeating 

the resampling procedure 20 times for 20 pseudo-users. 

 
Fig. 5. Stress-Related Overarousal Index with Benchmarks 

Results show that stress-related Overarousal index 
constructed via GMM classifier can be developed, using 
limited historical data. Benchmark curves establishing limits 
of high and low stress can be used in addition to Overarousal 
index. Thus, analytical approach combining Stress-Related 
Overarousal Index and benchmark curves facilitates 
interpretation of sensorial physiological signals. 

VII. DISCUSSION 

A. Findings 

Present study shows that stress-related benchmarks can be 
constructed with limited historical data through the use of 
classification algorithm, block bootstrap, and Markov Chain 
modeling. Our study extends the application of classification 
algorithms for constructing stress-related indices to a new 
field of emotional response simulation scenarios at group level 
in a broad workplace context. For achieving this objective, we 
use a block bootstrap for data-driven scenario formulation, 
and Markov Chain models for simulating benchmark curves 
under specific assumptions. 

More specifically, our study contributes to public 
management literature by making a methodological advance 
allowing to examine stress-related indicators. We find that 
stress-related benchmarks with limited historical data may be 
effectively used in Swiss public administration. Introduction 
of wearable biosensor technologies in Public Sector may 
contribute to digital transformation of the workplace [26] and 
strengthen Digital Era Governance Model of public 
management [27].  
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B. Methodological Implications 

Present study shows that numerical simulation allows 
identifying stress-related indicators in conditions when only a 
small data set is available in the workplace. Furthermore, our 
findings show that stress patterns can be recognized at group 
level and interpreted accordingly. From methodological 
perspective, these findings imply that both systematic and a 
non-systematic use of biosensor technologies could support 
stress benchmarking in a broad range of organizations as 
social groups.  

Bootstrap methods and numerical simulation may 
facilitate the use of relatively small data corresponding to non-
systematic or restricted exploitation of wearables. Bootstrap 
methods allow to learn distributional characteristics from 
relatively small datasets and integrate them into simulation 
models. Further, block resampling schemes could increase a 
presence of observations corresponding to certain regions in 
the dataset. 

Our findings imply that combined use of Overarousal 
index and benchmark curves enhances the interpretation of 
stress-related indicator with limited historical datasets. 
Estimation of transition probabilities may be coupled with 
qualitative analysis or questionnaire that do not stem from 
sensor data. Questionnaires can help to refine the 
identification of seasonality or inhomogeneity periods of 
stress in the workplace. Those periods may occur during shifts 
in the work complexity, work intensity or other factors. 
Qualitative assessment from employees may facilitate 
distinguishing between inhomogeneity regions, confirm data 
labeling, and justify benchmarks. 

C. Practical Implications 

From practical standpoint, stress-related indicators 
combining Overarousal index with benchmark curves may 
facilitate timely identification of excessive stress in the 
workplace. It may support managerial decision-making on 
stress management through isolated psycho-social 
interventions or comprehensive stress-management programs. 
Timely stress identification at group level may also support 
managerial decision-making on stress prevention through job 
design, workload optimization, and other human resource 
management practices. Finally, they may contribute to 
development of new occupational health and safety policies. 
These practical steps may result in decreasing stress as well as 
increasing productivity and psychological well-being in 
public service in Switzerland, in other countries and 
organization types. 

Group-level use of sensory data for stress recognition 
would be an effective practical tool to enhancing 
psychological well-being in the workplace. Wearable 
technologies may provide new opportunities for electronic 
stress management, especially in the light of ongoing Public 
sector digitalization. Yet, the use of wearable technologies in 
the workplace must be authorized, ethical, and legal. 
Collective-level indicators may contribute to protection of 
information privacy and non-identifiability of individual 
employees. Recording of sensorial information in databases 
may be done in blinded way and activated only when certain 
threshold of users is met. 

Wearables may be more expensive stress measurement 
tools than surveys. However, they bring additional 
opportunities for organizations. The range of opportunities 
depends on the built-in functionalities and relationships with 

vendors that may support device exploitation with additional 
data-intensive products and services. Relevant choice of 
resource access strategy for wearables may optimize their 
cost. Yet, organizations may choose between outsourcing, 
strategic alliances or internal development of data-intensive 
products which also influence cost of maintaining wearables 
in organizations [28]. Outsourcing relationships can 
sometimes lead to costly customization services. For example 
public administrations more frequently choose internal 
development for procuring information technologies for 
human resource management [28]. In this case, internal data 
management and development of data-intensive services can 
cut costs, making data and privacy protection more reliable, 
compared to outsourcing or de-centralized development. 

D. Limitations 

In spite of contribution to the literature, present study is 
subject to three main limitations. First, the GMM approach 
does not identify stress. However, the goal of present research 
is rather to identify classes with low, medium and high arousal 
associated with stress, and this goal is achieved.  

Second, this model is oriented towards identification of 
common stress-related patterns at group level. It does not 
reflect individual heterogeneity in physiological stress-related 
responses. Therefore, Overarousal index and stress-related 
benchmarks based on this classifier would rather reflect 
general and shared trends in stress-related response at group 
level, mitigating individual particularities.  

Third, obtained benchmarks are model-dependent. Stress-
related pattern of Swiss fiscal administration impacts 
transition frequencies through GMM. Stress-related 
benchmarks may vary substantially across different 
workplaces, and should be used with caution. 

E. Future Research 

Research should examine the validity of our 
methodological approach. Future studies should consider 
alternative classifiers for stress pattern recognition. They may 
explore construction of benchmark curves incorporating 
seasonality patterns and alternative simulation models. Future 
research may address the validity of auxiliary artifacts for 
stress-management, such as stress pattern recognition models, 
group-level indicators of stress and benchmarks curves. 
Future research may elaborate mixed methodologies, relying 
on triangulated biosensor data, numerical simulation methods, 
and stress-related benchmarking.  

VIII. CONCLUSION 

Our study examines a methodology for constructing 
stress-related benchmarks for Overarousal index, and it shows 
that numerical simulation is effective for identifying 
workplace stress with small dataset avaliability. This work 
contributes to  emergent research on simulation of stress-
related responses according to specified scenarios from 
statistical methodology perspective. While these the 
benchmarking result are obtained in the context of Swiss 
public administration, empirical analysis confirms that 
numerical simulation may be effectively used across a broad 
range of organizations. We should build on this opportunity to 
improve timely stress identification, develop prevention of its 
negative consequences, and support enhancement of 
psychological well-being in the workplace over time. 
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