Dynamics of Evolving Feed-Forward Neural Networks and Their Topological Invariants
Détails
Télécharger: A181.16-MV-LNCompSci9886-99.pdf (261.66 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_8777B6A356F7
Type
Partie de livre
Sous-type
Chapitre: chapitre ou section
Collection
Publications
Institution
Titre
Dynamics of Evolving Feed-Forward Neural Networks and Their Topological Invariants
Titre du livre
Artificial Neural Networks and Machine Learning – ICANN 2016
Editeur
Springer Nature
ISBN
978-3-319-44777-3
978-3-319-44778-0
978-3-319-44778-0
ISSN
0302-9743
1611-3349
1611-3349
Statut éditorial
Publié
Date de publication
2016
Editeur⸱rice scientifique
Villa A.E.P., Masulli P., Pons Rivero A.J.
Volume
9886
Série
Lecture Notes in Computer Science
Pages
99-106
Langue
anglais
Résumé
The evolution of a simulated feed-forward neural network with recurrent excitatory connections and inhibitory forward connections is studied within the framework of algebraic topology. The dynamics includes pruning and strengthening of the excitatory connections. The invariants that we define are based on the connectivity structure of the underlying graph and its directed clique complex. The computation of this complex and of its Euler characteristic are related with the dynamical evolution of the network. As the network evolves dynamically, its network topology changes because of the pruning and strengthening of the onnections and algebraic topological invariants can be computed at different time steps providing a description of the process. We observe that the initial values of the topological invariant computed on the network before it evolves can predict the intensity of the activity.
Site de l'éditeur
Création de la notice
02/12/2016 17:28
Dernière modification de la notice
20/08/2019 14:46