
Dynamics of Evolving Feed-Forward Neural
Networks and Their Topological Invariants

Paolo Masulli(B) and Alessandro E.P. Villa

NeuroHeuristic Research Group, University of Lausanne,
Quartier Dorigny, 1015 Lausanne, Switzerland
{paolo.masulli,alessandro.villa}@unil.ch

http://www.neuroheuristic.org

Abstract. The evolution of a simulated feed-forward neural network
with recurrent excitatory connections and inhibitory forward connec-
tions is studied within the framework of algebraic topology. The dynam-
ics includes pruning and strengthening of the excitatory connections. The
invariants that we define are based on the connectivity structure of the
underlying graph and its directed clique complex. The computation of
this complex and of its Euler characteristic are related with the dynam-
ical evolution of the network. As the network evolves dynamically, its
network topology changes because of the pruning and strengthening of
the onnections and algebraic topological invariants can be computed at
different time steps providing a description of the process. We observe
that the initial values of the topological invariant computed on the net-
work before it evolves can predict the intensity of the activity.

Keywords: Graph theory · Network invariant · Directed clique com-
plex · Recurrent neural dynamics · Synfire chain · Synaptic plasticity

1 Introduction

A network is a set of nodes satisfying precise properties of connectedness. This
description allows the construction of topological spaces that can be studied
with the tools of algebraic topology. Network theory aims to understand and
describe the shape and the structure of networks, and the application of the
tools developed within the framework of algebraic topology can provide new
insights of network properties in several research fields.

The directed clique complex [6,13] is a rigorous way to encode the topological
features of a network in the mathematical framework of a simplicial complex,
allowing the construction of simple invariants such as the Euler characteristic
and the Betti numbers and to make the constructions of persistent homology.
These constructions have been applied successfully to the field of data science
[4], proving to be a powerful tool to understand the inner structure of a data
set by representing it as a sequence of topological spaces, and more recently to
neuroscience [6,8,13,14].
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In an evolving network, each node is represented by a unit whose activity
is necessarily related to a set of precise rules defining the combined activity
of the afferent nodes transmitted by the connecting edges. Re-entrant activity
occurs in the presence of reciprocal connections between certain nodes. Selected
pathways through the network may emerge because of dynamical processes that
shape selected activity-dependent connection pruning. Hence, network topol-
ogy and dynamics combine and play a crucial role in defining the evolution
of a network [7]. In a previous study we introduced topological invariants [13]
and suggested their application to integrate-and-fire recurrent neural networks
with convergent/divergent layered structure [2] with an embedded dynamics of
synaptic plasticity. Spontaneous development of synchronous layer activation in
a self-organizing recurrent neural network model that combines a number of dif-
ferent plasticity mechanisms has been described [20]. However, the question to
what extent the initial network topology can be predictive of the evolved circuit
remains to be further investigated.

The current study extends further our previous investigation [13] because
global background activity is introduced and inhibitory connections have now
been included in the network. The results provide new evidence that the topo-
logical invariants presented here offer as a valid descriptor for predicting how a
network may evolve under the effect of pruning dynamics. The family of network
studied here represents an important step towards the direction of a simulation
with more refined biologically-inspired models.

2 Methods

2.1 Graphs, Clique Complexes and Topological Invariants

An abstract oriented simplicial complex K [9] is the data of a set K0 of vertices
and sets Kn of lists σ = (x0, . . . , xn) of elements of K0 (called n-simplices),
for n ≥ 1, with the property that, if σ = (x0, . . . , xn) belongs to Kn, then any
sublist (xi0 , . . . , xik) of σ belongs to Kk. The sublists of σ are called faces.

We consider a finite directed weighted graph G = (V,E) with vertex set V
and edge set E with no self-loops and no double edges, and denote with N the
cardinality of V . Associated to G, we can construct its (directed) clique complex
K(G), which is the directed simplicial complex given by K(G)0 = V and

K(G)n = {(v0, . . . , vn) : (vi, vj) ∈ E for all i < j} for n ≥ 1. (1)

In other words, an n-simplex contained in K(G)n is a directed (n + 1)-clique or
a completely connected directed subgraph with n + 1 vertices. Notice that an
n-simplex is though of as an object of dimension n and consists of n+1 vertices.

By definition, a directed clique (or a simplex in our complex) is a fully-
connected directed sub-network: this means that the nodes are ordered and there
is one source and one sink in the sub-network, and the presence of the directed
clique in the network means that the former is connected to the latter in all the
possible ways within the sub-network as illustrated by Fig. 1.
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Fig. 1. The directed clique complex. (A) The directed clique complex of the represented
graph consists of a 0-simplex for each vertex and a 1-simplex for each edge. There is
only one 2-simplex (123). Note that ‘2453’ does not form a 3-simplex because it is not
fully connected. ‘356’ does not form a simplex either, because the edges are not oriented
correctly. (B) The addition of the edge (52) to the graph in (A) does not contribute
to creating any new 2-simplex, because of its orientation. The edges connecting the
vertices 2, 3 and 5 (respectively 2, 4 and 5) are oriented cyclically, and therefore they do
not follow the conditions of the definition of directed clique complex. (C) By reversing
the orientation of the new edge (25), we obtain two new 2-simplices: (235) and (245).
Note that we do not have any 3-simplex. (D) We added a new edge (43), thus the sub-
graph (2435) becomes fully connected and is oriented correctly to be a 3-simplex in
the directed clique complex. In addition this construction gives two other 2-simplices:
(243) and (435).

The directed clique complex is the basic topological object that allows us to
introduce invariants of the graph: the Euler characteristic of the directed clique
complex K(G) of G is the integer defined by χ(K(G)) =

∑N
n=0(−1)n |K(G)n| or

in other words the alternating sum of the number of simplices that are present
in each dimension. The number of simplices in each dimension (in particular 1-
and 2-simplices is also used as invariant of a network.

Notice that the construction of the directed clique complex of a given network
G does not involve any choice, and therefore, since the Euler characteristic of a
simplicial complex is a well-defined quantities for a simplicial complex [9], our
constructions produce quantities that are well-defined for the network G, and
we shall refer to them simply as the Euler characteristic of G.
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2.2 Network Structure and Dynamics

The artificial recurrent neural networks consist of a finite number of Boolean
integrate-and-fire (IF) neurons organized in layers with a convergent/divergent
connection structure [2]. The networks are composed by 50 layers, each of them
with 10 IF neurons.

The first layer is the layer that receives external stimulations (also referred
to as the input layer) and all its 10 neurons get activated at the same time at a
fixed frequency of 0.1, i.e. every 10 time steps of the history.

Each neuron in a layer is connected to a randomly uniformly distributed
number of target neurons f belonging to the next downstream layer. The aver-
age distribution of the number of incoming connections is shown in Fig. 2. The
networks include recurrence in their structure, meaning that a small fraction g
of the neurons appears in two different layers. This means that a neuron k that is
also identified as neuron l, is characterized by the union of the input connections
of neurons k and l, as well as by the union of their respective efferent projections.

We extended the networks constructed in [13] to include inhibition and back-
ground activity. A fixed proportion (10%) of the neurons are inhibitory, the
remaining (90%) are excitatory. The state Si(t) of a neuron i takes values 0
(inactive) or 1 (active) and all IF neurons are set inactive at the beginning of
the simulation. The state Si(t) is a function of the its activation variable Vi(t),
such that Si(t) = H(Vi(t) − 1). H is the Heaviside function, H(x) = 0 : x < 0,
H(x) = 1 : x ≥ 0, and neurons have a refractory period of one time step after
activation. At each time step, the value Vi(t) of the activation variable of the ith

neuron is calculated with the formula Vi(t + 1) =
∑

j Sj(t)wji(t) + bi(t), where
bi(t) is the background activity, wji(t) are the weights of the directed connec-
tions from any jth neuron projecting to neuron i. The background activity bi(t)
is sampled from a Poisson distribution of parameter λ = 1 multiplied by a fixed
factor of 0.15.

The weights of the excitatory connections have been limited to three values,
i.e. w1 = 0.1, w2 = 0.2, and w3 = 0.4. At the beginning of the simulations all
connection weights are randomly uniformly distributed among the three possible
values. On the opposite, all inhibitory connections are set to w4 = −0.2. The
weights of all excitatory connections are updated synchronously at each time
step.

The network dynamics implements activity-dependent plasticity of the exci-
tatory connections. Whenever the activation of a connection does not lead to
the activation of its target neuron during an interval lasting a time steps, its
weight is weakened to the level immediately below the current one. Whenever
the weight of an excitatory connection reaches the lowest level without any
increase in a time steps, then the connection is removed [10]. The pruning of the
connections changes the topology of the network. Similarly, whenever an excita-
tory connection with a weight wm is activated at least m + 1 consecutive time
steps, the connection weight is strengthened to the level immediately higher than
the current one. Note though that in the current implementation the inhibitory
connections are never pruned and their weights remain constant.
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Fig. 2. Cumulative distributions of the efferences within one neural circuit at the begin
of the simulation. Network parameters: layer-to-layer downstream connections: 90%;
fraction of recurrent neurons: 10 %; weakening dynamics threshold: 25 steps. (A) exci-
tatory efferent connections to excitatory cells (e→e) and to inhibitory cells (e→i). (B)
inhibitory efferent connections to excitatory cells (i→e) and to inhibitory cells (i→i).

Hence, the parameter space of our simulations was defined by three parame-
ters: the number f of layer-to-layer downstream connections in the range 1–10
by steps of 3, the small fraction g of the neurons appearing in two different
layers in the range 5–10 % by steps of 5 %, and the interval a of the weakening
dynamics of the connections in the range 10–26 by steps of 8.

2.3 Implementation of the Simulations

The simulation software was implemented from scratch in Python. The net-
work evolved with the dynamics explained above and the program computed
the directed clique complex at each change of the network topology. The simula-
tion was stopped after 200 time steps, or earlier if the activity died out because of
the pruning. For the entire network, the directed clique complex was computed
each time the connectivity changed because of pruning. For the sub-network of
the active nodes, the computation was carried out at each step of the simulation.

The computed directed clique complexes were used to compute the Euler
characteristic both for the complexes representing the entire network and for
the sub-complexes of the active nodes. To compute the directed clique complex
of a network, we used the algorithm implemented in the igraph Python package
[5], adapted to find directed cliques, run in parallel on several CPUs using the
tool GNU Parallel [16].

3 Results

We considered a directed graph with nodes representing individual neurons and
oriented edges representing the connections between the neurons with a weight
corresponding to the connection strength. The network topology is based on
a simplified model of feed-forward neural network with convergent/divergent
layered structure with few embedded recurrent connections and 10 % inhibitory
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units at the begin of the simulation. We have computed the Euler characteristic
and its variation during the evolution of such networks in order to detect how
the structure changes as the network evolves. The nodes of the input layer are
activated at regular time intervals.

We observed that the Euler characteristic of the entire network could detect
the pruning activity during the neural network evolution (Fig. 3). In particular,
the step to step variation of the Euler characteristic matched the number of con-
nections pruned over time. The Euler characteristic appears as a good estimator
of the activity level within the network and of its topological changes.

Fig. 3. The evolution of the Euler characteristic. The plot shows the variation of the
Euler characteristic (averaged across all the networks in the family) over time during
the network evolution (solid line), compared with the plot of the pruning activity
(dashed line). We observe that the Euler characteristic of the direct clique complex of
the entire network detects the changes in the network topology caused by the pruning
activity.

Moreover, despite the more complex dynamics considered in the current sim-
ulation, we found new evidence in favor of the main finding of our previous
study [13]: the type of dynamics undergoing the neural network evolution and
the structure of the directed clique complex of that network at the very begin-
ning of the simulation (i.e. before the occurrence of connection pruning) were
correlated. In particular, the average number of active units during the simula-
tion was correlated to the number of simplices, in the directed clique complex,
of dimension two (Pearson correlation coefficient r(190) = 0.50, p < 0.001) and
dimension three (r(190) = 0.50, p < 0.001).
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Even in presence of different network dynamics, the initial connectivity struc-
ture of the network contains a algebraic-topological information that can be used
to predict the type of evolution that the network is going to have. The rationale
for it being correlated with the number of high (2 and 3) dimensional simplices
is that directed cliques are fully connected sub-networks, i.e. sub-networks with
an initial and a final node that are connected in the highest possible number of
ways, and thus they contribute to the propagation of the activation.

4 Discussion

Network topology and dynamics are closely related: the convergent/divergent
networks with neurons organised in layers in a feed-forward structure, which we
considered here, are closely associated with synfire chains [1,2]. These networks
are characterized by a highly correlated activity of the neurons within each later,
propagated from a layer to the next one, which is the kind of behaviour that we
observed in our simulations. The temporal patterns of activation displayed by
synfire chains are of central importance in the transmission of neural information
[11], and experimental results in electrophysiology show the emergence of precise
patterns of activation [15,17], associated with neural functions such as sensory
encoding and cognitive responses.

The networks considered here are a version of synfire chains, with the sim-
plification that the chain structure forms the entirety of the network: for this
reason we do not investigate the important problem of the emergence of syn-
fire chains embedded in bigger networks. This question has been investigated in
relation with several network features, as a function of network topology and
plasticity rules [18–20]. Our simulations show that the excitatory-inhibitory and
the background noise are central elements in the maintenance of a steady and
irregular activity level [3,12]: the maintenance of a non-saturated activity level
for the duration of the simulations is necessary in order to correlate the average
activity of the networks with the topological invariants that we have presented
here. The addition of inhibitory neurons and background activity with respect
to our previous study [13] gave richer and more complicated dynamics, and yet
we found that our tools can shed light on the links between network topology
and pruning dynamics. The algebro-topological framework of analysis presented
here appears as a very promising technique and deserves further study in order
to investigate the deeper relations between temporal activation patterns and
network topology in biologically inspired networks.
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