Asymptotic Analysis of a Measure of Variation

Détails

Ressource 1Télécharger: BIB_7A653C04F53A.P001.pdf (226.53 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_7A653C04F53A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Asymptotic Analysis of a Measure of Variation
Périodique
Theory of Probability and Mathematical Statistics
Auteur⸱e⸱s
Albrecher H., Teugels J. L.
ISSN
0094-9000
Statut éditorial
Publié
Date de publication
2007
Peer-reviewed
Oui
Volume
74
Pages
1-10
Langue
anglais
Résumé
Let Xi, i = 1,…, n, be a sequence of positive independent identically distributed random variables and define (Formula Presented). Utilizing Karamata’s theory of functions of regular variation, we determine the asymptotic behaviour of arbitrary moments (Formula Presented), k ∈ ℕ, for large n, given that X1 satisfies a tail condition, akin to the domain of attraction condition from extreme value theory. As a by-product, the paper offers a new method for estimating the extreme value index of Pareto-type tails.
Création de la notice
09/02/2009 19:27
Dernière modification de la notice
20/08/2019 14:36
Données d'usage