ASYMPTOTIC ANALYSIS OF A MEASURE OF VARIATION

HANSJÖRG ALBRECHER* AND JEF TEUGELS

ABSTRACT. Let X_i , $i=1,\ldots,n$ be a sequence of positive independent identically distributed random variables and define

$$T_n := \frac{X_1^2 + X_2^2 + \ldots + X_n^2}{(X_1 + X_2 + \ldots + X_n)^2}.$$

Utilizing Karamata theory of functions of regular variation, we determine the asymptotic behavior of arbitrary moments $\mathbb{E}(T_n^k)$ $(k \in \mathbb{N})$ for large n, given that X_1 satisfies a tail condition, akin to the domain of attraction condition from extreme value theory. As a side product, the paper offers a new method for estimating the extreme value index of Pareto-type tails.

1. Introduction

Let X_i , i = 1, ..., n be a sequence of positive independent identically distributed (i.i.d.) random variables with distribution function F and define

(1)
$$T_n := \frac{X_1^2 + X_2^2 + \ldots + X_n^2}{(X_1 + X_2 + \ldots + X_n)^2}.$$

The asymptotic behavior of $\mathbb{E}(T_n)$ was investigated in [5], simplifying and generalizing earlier results in [4] and [6].

In this paper we extend several results of [5] and derive the limiting behavior of arbitrary moments $\mathbb{E}(T_n^k)$ ($k \in \mathbb{N}$). This is achieved by using an integral representation of $\mathbb{E}(T_n^k)$ in terms of the Laplace transform of X_1 , which is derived in Section 2.

Most of our results will be derived under the condition that X_1 satisfies

(2)
$$1 - F(x) \sim x^{-\alpha} \ell(x), \quad x \uparrow \infty$$

where $\alpha > 0$ and $\ell(x)$ is slowly varying, i.e. $\lim_{x\to\infty} \ell(tx)/\ell(x) = 1 \,\forall\, t>0$, see e.g. [3]. It is well known that condition (2) appears as the essential condition in the domain of attraction problem of extreme value theory. For a recent treatment, see [2]. A distribution satisfying (2) is called of *Pareto-type* with $index\ \alpha$. When $\alpha < 2$, then the condition coincides with the domain of attraction condition for weak convergence to a non-normal stable law. It is then obvious that for $\beta > 0$,

(3)
$$E(X_1^{\beta}) := \mu_{\beta} = \beta \int_0^{\infty} x^{\beta - 1} (1 - F(x)) \, dx \le \infty$$

will be finite if $\beta < \alpha$ but infinite whenever $\beta > \alpha$. For convenience, we define $\mu_0 := 1$ and $\mu := \mu_1$.

 $^{1991\ \}textit{Mathematics Subject Classification}.\ \text{Primary 62G20};\ \text{secondary 62G32}.$

Key words and phrases. Functions of regular variation, domain of attraction of a stable law, extreme value theory.

 $^{^*}$ Supported by Fellowship F/04/009 of the Katholieke Universiteit Leuven and the Austrian Science Foundation Project S-8308-MAT.

The results of this paper are based on the theory of functions of regular variation (see e.g. [3]). Clearly, if $\mathbb{E}(X_1) = \infty$, both the numerator and the denominator in (1) will exhibit an erratic behavior, whereas for $\mathbb{E}(X_1) < \infty$ and $\mathbb{E}(X_1^2) = \infty$ this is the case only for the numerator. The results in Section 3 quantify this effect.

As a by-product, the results of this paper suggest a new method for estimating the extreme value index of Pareto-type distributions from a data set of observations, which is discussed in Section 4.

The quantity T_n is a basic ingredient in the study of the sample coefficient of variation of a given set of independent observations X_1, \ldots, X_n from a random variable X, which is a frequently used risk measure in practical applications. In [1], this connection will be used to derive asymptotic properties of the sample coefficient of variation, including a distributional approach.

2. Preliminaries

Let $\varphi(s) := \mathbb{E}(e^{-sX_1}) = \int_0^\infty e^{-sx} dF(x)$, $s \ge 0$ denote the Laplace transform of X_1 . Then, following an idea of [5], one can use the identity

$$\frac{1}{x^{\beta}} = \frac{1}{\Gamma(\beta)} \int_0^\infty e^{-s x} s^{\beta - 1} ds, \quad \beta > 0$$

and Fubini's theorem to deduce that

$$\mathbb{E}\frac{1}{X_1^{\beta}} = \frac{1}{\Gamma(\beta)} \int_0^{\infty} s^{\beta - 1} \varphi(s) \, ds.$$

More generally, for i.i.d. random variables X_1, \ldots, X_n , one obtains the representation formula

(4)
$$\mathbb{E} \frac{\prod_{i=1}^{n} X_{i}^{k_{i}}}{(X_{1} + X_{2} + \dots + X_{n})^{\beta}} = \frac{(-1)^{k_{1} + \dots + k_{n}}}{\Gamma(\beta)} \int_{0}^{\infty} s^{\beta - 1} \prod_{i=1}^{n} \frac{\partial^{k_{i}} \varphi(s)}{\partial s^{k_{i}}} ds,$$

for nonnegative integers k_i (i = 1, ..., n). In particular, by symmetry

(5)
$$\mathbb{E}(T_n) = \mathbb{E}\frac{X_1^2 + X_2^2 + \dots + X_n^2}{(X_1 + X_2 + \dots + X_n)^2} = n \int_0^\infty s \varphi''(s) \varphi^{n-1}(s) \, ds,$$

which formed the basis for the analysis in [5]. The representation (5) can be generalized in the following way:

Lemma 2.1. For an arbitrary positive integer k,

(6)
$$\mathbb{E}(T_n^k) = \sum_{r=1}^k \sum_{\substack{k_1, \dots, k_r \ge 1 \\ k_1 + \dots + k_r = k}} \frac{k!}{k_1! \cdots k_r!} B(n, k_1, \dots, k_r)$$

with

$$B(n, k_1, \dots, k_r) = \frac{\binom{n}{r}}{\Gamma(2k)} \int_0^\infty s^{2k-1} \varphi^{(2k_1)}(s) \cdots \varphi^{(2k_r)}(s) \, \varphi^{n-r}(s) \, ds.$$

Proof. For an arbitrary positive integer k we have

$$\mathbb{E}(T_n^k) = \mathbb{E}\frac{(X_1^2 + X_2^2 + \dots + X_n^2)^k}{(X_1 + X_2 + \dots + X_n)^{2k}} = \sum_{\substack{k_1, \dots, k_n \ge 0 \\ k_1 + \dots + k_n = k}} \frac{k!}{k_1! \cdots k_n!} \ \mathbb{E}\frac{X_1^{2k_1} X_2^{2k_2} \cdots X_n^{2k_n}}{(X_1 + X_2 + \dots + X_n)^{2k}},$$

where $k_i \leq k$ are nonnegative integers. Choose an n-tuple (k_1, \ldots, k_n) in the above sum and let r denote the number of its non-zero elements $(k_{i_1}, \ldots, k_{i_r})$ (clearly $1 \leq r \leq k$). There are exactly $\binom{n}{r}$ possibilities of extending $(k_{i_1}, \ldots, k_{i_r})$ to an n-tuple by filling in n-r zeroes; each of the resulting n-tuples leads to the same summand in (6). Thus we can write

(7)
$$\mathbb{E}(T_n^k) = \sum_{r=1}^k \sum_{\substack{k_1, \dots, k_r \ge 1 \\ k_1 + \dots + k_r = k}} \frac{k!}{k_1! \cdots k_r!} \underbrace{\binom{n}{r} \mathbb{E} \frac{X_1^{2k_1} X_2^{2k_2} \cdots X_n^{2k_r}}{(X_1 + X_2 + \dots + X_n)^{2k}}}_{:=B(n, k_1, \dots, k_r)},$$

so that (6) holds in view of (4).

3. Main Results

As promised, we will assume in the sequel that X_1 satisfies condition (2). Recall that when $\alpha > 1$ then $\mu < \infty$ while $\mu_2 < \infty$ as soon as $\alpha > 2$. The finiteness of μ and/or μ_2 has its influence on the asymptotic behavior of the summands that make up the statistic T_n . It is therefore not surprising that our results will be heavily depending on the range of α . We state a first and general result.

Lemma 3.1. If X_1 has a regularly varying tail with index $\alpha > 0$ (i.e. $1 - F(x) \sim x^{-\alpha} \ell(x)$), then the asymptotic behavior of the m-th derivative of the Laplace transform $\varphi(s)$ as $s \downarrow 0$ is given by

(8)
$$\varphi^{(m)}(s) \sim (-1)^m \alpha \Gamma(m-\alpha) s^{\alpha-m} \ell(1/s), \quad m > \alpha.$$

Proof. Let $\chi(s) := \int_0^\infty e^{-sx} (1 - F(x)) dx$. Since $1 - F(x) \sim x^{-\alpha} \ell(x)$, it follows that for $k > \alpha - 1$

$$(-1)^k \chi^{(k)}(s) = \int_0^\infty x^k e^{-sx} (1 - F(x)) \, dx \sim \Gamma(k + 1 - \alpha) s^{-k - 1} (1 - F(\frac{1}{s})) \quad \text{as } s \to 0.$$

Since $\varphi(s) = 1 - s \chi(s)$, we have for $m \ge 1$

$$\varphi^{(m)}(s) = -m\chi^{(m-1)}(s) - s\chi^{(m)}(s),$$

so that for $m > \alpha$

$$\frac{s^{m}\varphi^{(m)}(s)}{1 - F(\frac{1}{s})} = -m\frac{s^{m}\chi^{(m-1)}(s)}{1 - F(\frac{1}{s})} - \frac{s^{m+1}\chi^{(m)}(s)}{1 - F(\frac{1}{s})}$$

$$\sim (-1)^{m}(m\Gamma(m-\alpha) - \Gamma(m+1-\alpha)) = (-1)^{m}\alpha\Gamma(m-\alpha),$$

from which the assertion follows.

Theorem 3.1. If X_1 belongs to the domain of attraction of a stable law with index α , $0 < \alpha < 1$, then for all $k \ge 1$

(9)
$$\lim_{n \to \infty} \mathbb{E}(T_n^k) = \frac{k!}{\Gamma(2k)} \sum_{r=1}^k \frac{\alpha^{r-1}}{r \Gamma(1-\alpha)^r} G(r,k),$$

where G(r, k) is the coefficient of x^k in the polynomial

$$\left(\sum_{j=1}^{k-r+1} \frac{\Gamma(2j-\alpha)}{j!} x^j\right)^r.$$

Proof. From $1 - F(x) \sim x^{-\alpha}\ell(x)$ it follows that $1 - \varphi(s) \sim \Gamma(1 - \alpha) s^{\alpha}\ell(\frac{1}{s})$ (see e.g. Corollary 8.1.7 in [3]). Moreover, for any sequence $(a_n)_{n>1}$ with $a_n \to \infty$ we have

$$\varphi^n(\frac{s}{a_n}) = e^{n\log\varphi(s/a_n)} \sim e^{-n\left(1-\varphi(s/a_n)\right)} \sim \exp[-n\left(\frac{s}{a_n}\right)^{\alpha}\ell\left(\frac{a_n}{s}\right)\Gamma(1-\alpha)].$$

Choose $(a_n)_{n>1}$ such that

(10)
$$n a_n^{-\alpha} \ell(a_n) \Gamma(1-\alpha) \to 1 \quad \text{for } n \to \infty.$$

Then for all $s \geq 0$

$$\lim_{n \to \infty} \varphi^n(\frac{s}{a_n}) = e^{-s^{\alpha}}.$$

We will now make use of the representation (6) for $\mathbb{E}(T_n^k)$. We have to investigate the asymptotic behavior of $B(n, k_1, \ldots, k_r)$. The change of variables $s = t/a_n$ together with an application of Potter's Theorem [3, Th.1.5.6], Lebesgue's dominated convergence theorem and Lemma 3.1 leads to

$$B(n, k_1, \dots, k_r) = \frac{\binom{n}{r}}{a_n \Gamma(2k)} \int_0^\infty \left(\frac{t}{a_n}\right)^{2k-1} \varphi^{(2k_1)} \left(\frac{t}{a_n}\right) \dots \varphi^{(2k_r)} \left(\frac{t}{a_n}\right) \underbrace{\varphi^{n-r} \left(\frac{t}{a_n}\right)}_{\rightarrow e^{-t^{\alpha}}} dt$$

$$\sim \frac{\alpha^r \binom{n}{r}}{a_n \Gamma(2k)} \int_0^\infty \left(\frac{t}{a_n}\right)^{2k-1} \left(\frac{t}{a_n}\right)^{r \alpha - 2k} \ell^r \left(\frac{a_n}{t}\right) \left(\prod_{j=1}^r \Gamma(2k_j - \alpha)\right) e^{-t^{\alpha}} dt$$

$$\sim \frac{\alpha^r \prod_{j=1}^r \Gamma(2k_j - \alpha)}{\Gamma(2k)} \underbrace{\underbrace{\binom{n}{r} \ell^r (a_n)}_{\rightarrow \Gamma(1-\alpha)^{-r}/r!} \underbrace{\int_0^\infty t^{r \alpha - 1} e^{-t^{\alpha}} dt}_{= (r-1)!/\alpha}$$

$$\sim \frac{\alpha^{r-1} \prod_{j=1}^r \Gamma(2k_j - \alpha)}{r \Gamma(1-\alpha)^r \Gamma(2k)}.$$

Summing up over all r = 1, ..., k in (6), we arrive at

(11)
$$\lim_{n \to \infty} \mathbb{E}(T_n^k) = \frac{k!}{(2k-1)!} \sum_{r=1}^k \frac{\alpha^{r-1}}{r \Gamma(1-\alpha)^r} \sum_{\substack{k_1, \dots, k_r \ge 1 \\ k_1 + \dots + k_r = k}} \prod_{j=1}^r \frac{\Gamma(2k_j - \alpha)}{k_j!}.$$

Now observe that

$$G(r,k) := \sum_{\substack{k_1,\ldots,k_r \geq 1 \\ k_1+\ldots+k_r=k}} \ \prod_{j=1}^r \frac{\Gamma(2k_j-\alpha)}{k_j!}$$

can be determined by generating functions. Concretely, if we look at the r-fold product

$$\left(\Gamma(2-\alpha)\,x + \frac{\Gamma(4-\alpha)}{2!}\,x^2 + \ldots + \frac{\Gamma(2m-\alpha)}{m!}\,x^m\right)^r$$

for m sufficiently large, then G(r,k) can be read off as its coefficient of x^k , since the kth power exactly comprises all contributions of combinations $k_1, \ldots, k_r \geq 1$ with $k_1 + \ldots + k_r = k$ in the above sum. It suffices to choose m = k - r + 1, since larger powers do not contribute to the coefficient of x^k any more. Hence Theorem 3.1 follows from (11).

Remark 3.1. For k = 1, we obtain $\lim_{n \to \infty} \mathbb{E}(T_n) = 1 - \alpha$, which is Theorem 5.3 of [5]. The limit of moments of higher order can now be calculated from (9):

$$\lim_{n \to \infty} \mathbb{E}(T_n^2) = \frac{1}{3}(1 - \alpha)(3 - 2\alpha),$$

$$\lim_{n \to \infty} \mathbb{E}(T_n^3) = \frac{1}{15}(1 - \alpha)(15 - 17\alpha + 5\alpha^2),$$

$$\lim_{n \to \infty} \mathbb{E}(T_n^4) = \frac{1}{105}(1 - \alpha)(105 - 155\alpha + 79\alpha^2 - 14\alpha^3),$$

$$\lim_{n \to \infty} \mathbb{E}(T_n^5) = \frac{1}{945}(1 - \alpha)(945 - 1644\alpha + 1106\alpha^2 - 344\alpha^3 + 42\alpha^4).$$

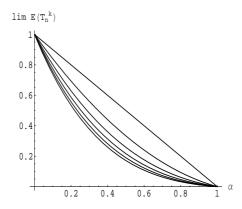


FIGURE 1. $\lim_{n\to\infty} \mathbb{E}(T_n^k)$ as a function of α $(k=1,\ldots,5)$ from top to bottom)

The following result generalizes Theorem 5.5 of [5], where the case k=1 was covered:

Theorem 3.2. If X_1 belongs to the domain of attraction of a stable law with index $\alpha = 1$ and $\mathbb{E}(X_1) = \infty$, then for all $k \geq 1$

(12)
$$\mathbb{E}(T_n^k) \sim \frac{1}{2k-1} \frac{\ell(a_n)}{\tilde{\ell}(a_n)},$$

where $\tilde{\ell}(x) = \int_{-\infty}^{x} (\ell(t)/t) dt$ and $(a_n)_{n\geq 1}$ is a sequence satisfying $a_n \sim n \, \tilde{\ell}(a_n)$.

Proof. Since X_1 belongs to the domain of attraction of a stable law with index $\alpha = 1$, we have $1 - F(x) \sim x^{-1}\ell(x)$ for some slowly varying function $\ell(x)$. Moreover $1 - \varphi(s) \sim s \,\tilde{\ell}(\frac{1}{s})$

with $\tilde{\ell}(x) = \int^x (\ell(t)/t) dt$ (see e.g. [3]). Note that $\tilde{\ell}(x)$ is again a slowly varying function. For any sequence $(a_n)_{n\geq 1}$ with $a_n\to\infty$ we have

$$\varphi^{n}(\frac{s}{a_{n}}) = e^{n\log\varphi(s/a_{n})} \sim e^{-n\left(1-\varphi(s/a_{n})\right)} \sim \exp\left[-n\left(\frac{s}{a_{n}}\right)\tilde{\ell}\left(\frac{a_{n}}{s}\right)\right].$$

If we choose a_n such that

(13)
$$n a_n^{-1} \tilde{\ell}(a_n) \to 1 \text{ for } n \to \infty,$$

then

(14)
$$\lim_{n \to \infty} \varphi^n(\frac{s}{a_n}) = e^{-s}.$$

Take a_n as in (13) and replace s by t/a_n in the representation (6). An application of Potter's Theorem, Lebesgue's dominated convergence theorem and Lemma 3.1 yields

$$B(n, k_1, \dots, k_r) = \frac{\binom{n}{r}}{a_n \Gamma(2k)} \int_0^\infty \left(\frac{t}{a_n}\right)^{2k-1} \varphi^{(2k_1)} \left(\frac{t}{a_n}\right) \dots \varphi^{(2k_r)} \left(\frac{t}{a_n}\right) \underbrace{\varphi^{n-r} \left(\frac{t}{a_n}\right)}_{\rightarrow e^{-t}} dt$$

$$\sim \frac{\binom{n}{r}}{a_n \Gamma(2k)} \int_0^\infty \left(\frac{t}{a_n}\right)^{2k-1} \left(\frac{t}{a_n}\right)^{r-2k} \ell^r \left(\frac{a_n}{t}\right) \left(\prod_{j=1}^r \Gamma(2k_j - 1)\right) e^{-t} dt$$

$$\sim \frac{\prod_{j=1}^r \Gamma(2k_j - 1)}{r! \Gamma(2k)} \frac{n^r \ell^r(a_n)}{a_n^r} \underbrace{\int_0^\infty t^{r-1} e^{-t} dt}_{=(r-1)!}$$

$$\sim \frac{\prod_{j=1}^r \Gamma(2k_j - 1)}{r \Gamma(2k)} \left(\frac{\ell(a_n)}{\tilde{\ell}(a_n)}\right)^r$$

Note that $\ell(a_n)/\tilde{\ell}(a_n) \to 0$ for $n \to \infty$ and thus, opposed to the case $\alpha < 1$, only the summand with r = 1 contributes to the dominating asymptotic term of (6). Therefore we obtain

$$\mathbb{E}(T_n^k) \sim \frac{1}{2k-1} \frac{\ell(a_n)}{\tilde{\ell}(a_n)}.$$

Theorem 3.3. Let X_1 belong to the domain of attraction of a stable law with index α , $1 \le \alpha < 2$ and $\mu := \mathbb{E}(X_1) < \infty$. Then for all $k \ge 1$

(15)
$$\mathbb{E}(T_n^k) \sim \frac{\Gamma(2k-\alpha)\Gamma(1+\alpha)}{\Gamma(2k)\,\mu^\alpha}\,n^{1-\alpha}\ell(n).$$

Proof. Since μ is finite, it follows that

(16)
$$\lim_{n \to \infty} \varphi^n(t/n) = e^{-\mu t} \quad \text{for all } t \ge 0.$$

However, in view of (16), we will use the change of variables s = t/n in the representation (6). By virtue of Potter's Theorem, Lebesgue's dominated convergence theorem and Lemma 3.1 we then obtain

$$B(n, k_1, \dots, k_r) = \frac{\binom{n}{r}}{n\Gamma(2k)} \int_0^\infty \left(\frac{t}{n}\right)^{2k-1} \varphi^{(2k_1)} \left(\frac{t}{n}\right) \dots \varphi^{(2k_r)} \left(\frac{t}{n}\right) \underbrace{\varphi^{n-r} \left(\frac{t}{n}\right)}_{\rightarrow e^{-\mu t}} dt$$

$$\sim \frac{\alpha^r \binom{n}{r}}{n\Gamma(2k)} \int_0^\infty \left(\frac{t}{n}\right)^{2k-1} \left(\frac{t}{n}\right)^{r \alpha - 2k} \ell^r \left(\frac{n}{t}\right) \left(\prod_{j=1}^r \Gamma(2k_j - \alpha)\right) e^{-\mu t} dt$$

$$\sim \frac{\alpha^r \prod_{j=1}^r \Gamma(2k_j - \alpha)}{\Gamma(2k)} \underbrace{\underbrace{\binom{n}{r} \ell^r(n)}_{n^r \alpha}}_{\sim n^{r(1-\alpha)}\ell^r(n)/r!} \underbrace{\underbrace{\int_0^\infty t^{r \alpha - 1} e^{-\mu t} dt}_{=\Gamma(r \alpha)/\mu^r \alpha}}_{=\Gamma(r \alpha)/\mu^r \alpha}$$

$$\sim \frac{\alpha^r \Gamma(r \alpha) \prod_{j=1}^r \Gamma(2k_j - \alpha)}{r! \mu^{r\alpha} \Gamma(2k)} n^{r(1-\alpha)} \ell^r(n).$$

Hence the first-order asymptotic behavior of (6) is solely determined by the term with r=1 and we obtain

$$\mathbb{E}(T_n^k) \sim \frac{\Gamma(2k-\alpha)\Gamma(1+\alpha)}{\Gamma(2k)\,\mu^\alpha}\,n^{1-\alpha}\ell(n).$$

Remark 3.2. For the special case k=1, (15) yields $\mathbb{E}(T_n)\sim \frac{\Gamma(2-\alpha)\Gamma(1+\alpha)}{\mu^{\alpha}}\;n^{1-\alpha}\ell(n),$ which is Theorem 5.1. of [5].

We pass to the case $\alpha > 2$.

Theorem 3.4. Let $1 - F(x) \sim x^{-\alpha} \ell(x)$ for some slowly varying function $\ell(x)$ and $\alpha > 2$. Then for all integers $k < \alpha - 1$

(17)
$$\mathbb{E}(T_n^k) \sim \left(\frac{\mu_2}{\mu^2}\right)^k n^{-k}$$

and for $k > \alpha - 1$

(18)
$$\mathbb{E}(T_n^k) \sim \frac{\Gamma(2k-\alpha)\Gamma(1+\alpha)}{\Gamma(2k)\,\mu^\alpha}\,n^{1-\alpha}\ell(n).$$

If $k = \alpha - 1$, then

- (i) (17) holds if $\ell(x) = o(1)$ (and in particular if $\mathbb{E}(X_1^{k+1}) < \infty$), (ii) $\mathbb{E}(T_n^k) \sim \left(\left(\frac{\mu_2}{\mu^2}\right)^k + C\frac{\Gamma(k-1)\Gamma(k+2)}{\Gamma(2k)\,\mu^{1+k}}\right) n^{-k}$ holds if $\ell(x) \sim C$ for a constant C,

Proof. Let us look at the quantity $B(n, k_1, \ldots, k_r)$. By Lemma 3.1 and the Bingham-Doney Lemma (see e.g. [3, Th.8.1.6]) the asymptotic behavior of $\varphi^{(m)}(s)$ at the origin is given by

$$(-1)^m \varphi^{(m)}(s) \sim \begin{cases} \alpha \Gamma(m-\alpha) s^{\alpha-m} \ell(1/s) & \text{if } m > \alpha \\ \alpha \tilde{\ell}(1/s) & \text{if } m = \alpha \text{ and } \mathbb{E}(X_1^m) = \infty \\ \mu_m & \text{if } m \leq \alpha \text{ and } \mathbb{E}(X_1^m) < \infty \end{cases},$$

where $\tilde{\ell}(x) = \int_0^x (\ell(u)/u) du$ is itself a slowly varying function. For simplicity, let us first assume that $\alpha \notin \mathbb{N}$. Then one can conclude in an analogous way as in the proof of Theorem 3.3 that the asymptotic behavior of $B(n, k_1, \ldots, k_r)$ is given by

$$B(n, k_1, ..., k_r) \sim C_1 n^{r-\alpha r_1 - 2(k-u_1)} \ell^{r_1}(n),$$

where r_1 is the number of integers among k_1, \ldots, k_r that are greater than $\alpha/2$, u_1 is the sum of these and C_1 is some constant. It remains to determine the dominating asymptotic term among all possible $B(n, k_1, \ldots, k_r)$: If $r_1 > 0$, then $r_1 = 1$, $u_1 = k$ and thus r = 1 yields the largest exponent, so that the asymptotic order is $n^{1-\alpha}\ell(n)$. Note that $r_1 > 0$ is possible for $2k > \alpha$ only. For $r_1 = 0$, on the other hand, r = k and thus $k_1 = \ldots = k_r = 1$ dominates leading to asymptotic order n^{-k} . Hence the asymptotically dominating power among $B(n, k_1, \ldots, k_r)$ is given by $\max(1 - \alpha, -k)$. From this we see that for $k < \alpha - 1$, r = k dominates and we obtain from (6)

$$\mathbb{E}(T_n^k) \sim k! \frac{n^k \, \mu_2^k \, \Gamma(2k)}{k! \, \Gamma(2k) \, n^{2k} \, \mu^{2k}} \sim \left(\frac{\mu_2}{\mu^2}\right)^k \, n^{-k}.$$

Alternatively, if $k > \alpha - 1$, the term with r = 1 dominates and we obtain (18) in just the same way as in Theorem 3.3.

Finally, the above conclusions also hold for $\alpha \in \mathbb{N}$ except when $k = \alpha - 1$. In the latter case the slowly varying function $\ell(x)$ determines which of the two terms $n^{1-\alpha}\ell(n)$ (corresponding to r = 1) and n^{-k} (corresponding to r = k) dominates the asymptotic behavior: if $\ell(x) = o(1)$ (which due to $\mathbb{E}(X_1^{k+1}) \sim (k+1) \int_0^n x^{-1}\ell(x) \, dx$ is in particular fulfilled for $\mathbb{E}(X_1^{k+1}) < \infty$), the second one dominates. If $\ell(x) \sim const.$, then both terms matter and the assertion of the theorem follows.

Corollary 3.1. If $1 - F(x) \sim x^{-2} \ell(x)$, then for k > 2

$$\mathbb{E}(T_n^k) \sim \frac{1}{(k-1)(2k-1)\mu^2} \frac{\ell(n)}{n}$$

and

$$\mathbb{E}(T_n) \sim \left\{ egin{array}{ll} rac{\mu_2}{\mu^2 \, n} & \emph{if} & \mathbb{E}(X_1^2) < \infty \ rac{2}{\mu^2} \, rac{ ilde{\ell}(n)}{n} & \emph{if} & \mathbb{E}(X_1^2) = \infty. \end{array}
ight.$$

Proof. One can easily verify that Theorem 3.4 remains true for $\alpha = 2$ except for k = 1 in the case $\mathbb{E}(X_1^2) = \infty$. In the latter case obviously r = 1 and one obtains (using $\varphi''(s) \sim 2\tilde{\ell}(1/s)$)

$$\mathbb{E}(T_n) \sim B(n,1) \sim \frac{2 \, n \, \tilde{\ell}(n)}{n^2} \, \int_0^\infty t e^{-\mu \, t} \, dt \sim \frac{2}{\mu^2} \, \frac{\tilde{\ell}(n)}{n},$$

which is already contained in [5, Theorem 5.2].

Remark 3.3. One might wonder whether a general limit result for $\mathbb{E}(T_n^k)$ for X_1 in the domain of attraction of a normal law (in the spirit of Theorem 5.2 of [5] for k=1) can be obtained with the integral representation approach used in this paper. This is however not the case: From $\int_0^x y^2 dF(y) \sim \ell_2(x)$ (where $\ell_2(x)$ is a slowly varying function) it follows by partial integration that $\varphi^{(2k)}(s)/\ell_2(1/s) = o(s^{2-2k})$ for k>1 as $s\to 0$, but the latter

	$\mathbb{E}(T_n)$	$\operatorname{Var}\left(T_{n}\right)$	$\operatorname{Var}\left(T_{n}\right)/\mathbb{E}(T_{n})$
$0 < \alpha < 1$	$1-\alpha$	$rac{lpha(1-lpha)}{3}$	$\frac{\alpha}{3}$
$\alpha = 1$	$\frac{\ell(a_n)}{\tilde{\ell}(a_n)} \ (o 0)$	$\frac{1}{3} \frac{\ell(a_n)}{\tilde{\ell}(a_n)} (\to 0)$	$\frac{1}{3}$
$1 < \alpha < 2$	$rac{\Gamma(2-lpha)\Gamma(1+lpha)}{\mu^2} \; n^{1-lpha} \ell(n)$	$rac{\Gamma(4-lpha)\Gamma(1+lpha)}{6\mu^lpha}\;n^{1-lpha}\ell(n)$	$\frac{(3-\alpha)(2-\alpha)}{6}$
$\alpha = 2$	$rac{2}{\mu^2} rac{ ilde{\ell}(n)}{n}$	$rac{\ell(n)}{3n\mu^2}$	$\frac{1}{6} \; \frac{\ell(n)}{\tilde{\ell}(n)} \; (\to 0)$
$2 < \alpha < 4$	$\frac{\mu_2}{\mu^2 n}$	$rac{\Gamma(4-lpha)\Gamma(1+lpha)}{6\mu^lpha}\;n^{1-lpha}\ell(n)$	$rac{\Gamma(4-lpha)\Gamma(1+lpha)}{6\mu^{lpha-2}\mu_2}\;n^{2-lpha}\ell(n)$
$\alpha \ge 4$	$rac{\mu_2}{\mu^2n}$	$\frac{\mu_4\mu^2 - \mu_2^2\mu^2 + 4\mu_2^3 - 4\mu\mu_2\mu_3}{\mu^6} \frac{1}{n^3}$	$\frac{\mu_4\mu^2/\mu_2 - \mu_2\mu^2 + 4\mu_2^2 - 4\mu\mu_3}{\mu^4} \frac{1}{n^2}$

Table 1. First order asymptotic terms of $\mathbb{E}(T_n)$, $\operatorname{Var}\left(T_{n}\right)$ and $\operatorname{Var}(T_n)/\mathbb{E}(T_n)$ for $1 - F(x) \sim x^{-\alpha}\ell(x)$ as a function of α

is not strong enough to identify the dominating term among the $B(n, k_1, \ldots, k_r)$ without any further assumptions on the distribution of X_1 .

As an illustration of the results of this paper, Table 1 gives the first order asymptotic terms of $\mathbb{E}(T_n)$, $\mathrm{Var}(T_n)$ and the dispersion $\mathrm{Var}(T_n)/\mathbb{E}(T_n)$ as a function of α . Note that the entries for $\alpha > 2$ have been obtained by calculating second-order asymptotic terms. The result for $\alpha > 4$ in the table actually holds whenever $\mu_4 < \infty$, since in this case the derivation of second-order terms does not rely on the assumption of regular variation and one obtains $\mathbb{E}(T_n^2) = \frac{\mu_2^2}{\mu^4} \frac{1}{n^2} + (\frac{10\mu_2^3 - 3\mu_2^2\mu^2 - 8\mu\mu_2\mu_3 + \mu^2\mu_4}{\mu^6}) \frac{1}{n^3} + O(\frac{1}{n^4})$ and $\mathbb{E}^2(T_n) = \frac{\mu_2^2}{\mu^4} \frac{1}{n^2} + C(\frac{1}{n^4}) \frac{1}{n^4} \frac{1}{n^4} + C(\frac{1}{n^4}) \frac{1}{n^4} + C(\frac{1}{n^4}) \frac{1}{n^4} + C(\frac{1}{n^4}) \frac{1}{n^4} \frac{1}{n^4} + C(\frac{1}{n^4}) \frac{1$ $(\frac{6\mu_2^3 - 4\mu\mu_2\mu_3 - 2\mu^2\mu_2^2}{\mu^6})\frac{1}{n^3} + O(\frac{1}{n^4})).$ From Table 1 we see that the dispersion of T_n is a continuous function in α with its

maximum in $\alpha = 1$ (see Figure 2).

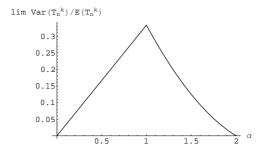


FIGURE 2. Limit of the dispersion of T_n as a function of α

4. Estimation of the extreme value index for Pareto-type tails

The results of Section 3 also give rise to an alternative and seemingly new method for estimating the extreme value index $1/\alpha$ for Pareto-type tails $1 - F(x) \sim x^{-\alpha} \ell(x)$ with $0 < \alpha < 2$ from a given data set of independent observations (see e.g. [2] for other estimators of the extreme value index). In fact, plotting $n T_n$ against n will tend to a line with slope $1 - \alpha$, if $0 < \alpha < 1$ and plotting $\log(n T_n)$ against $\log n$ will tend to a line with slope $2 - \alpha$, if $1 < \alpha < 2$. The asymptotic behavior of higher order moments of $n T_n$ available from Section 3 can then be used to increase the efficiency of the estimation procedure. At the same time, this provides a technique to test the finiteness of the mean of a distribution in the domain of attraction of a stable law.

Acknowledgement. The authors would like to thank Sophie Ladoucette for a careful reading of the manuscript.

References

- [1] H. Albrecher and J. Teugels. Asymptotic analysis of the sample coefficient of variation. In preparation.
- [2] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes: Theory and Applications. Wiley, Chichester, 2004.
- [3] N. Bingham, C. Goldie, and J. Teugels. Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1987.
- [4] H. Cohn and P. Hall. On the limit behaviour of weighted sums of random variables. Z. Wahrsch. Verw. Gebiete, 59(3):319-331, 1982.
- [5] A. Fuchs, A. Joffe, and J. Teugels. Expectation of the ratio of the sum of squares to the square of the sum: exact and asymptotic results. *Theory Probab. Appl.*, 46(2):243–255, 2001.
- [6] D. L. McLeish and G. L. O'Brien. The expected ratio of the sum of squares to the square of the sum. *Ann. Probab.*, 10(4):1019–1028, 1982.
- (H. Albrecher) Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria

 $E ext{-}mail\ address:$ albrecher@TUGraz.at

(J. Teugels) Department of Mathematics, Katholieke Universiteit Leuven, W. de Croylaan 54, B-3001 Heverlee, Belgium and EURANDOM, P.O. Box 513 - 5600 MB EINDHOVEN, THE NETHERLANDS

 $E ext{-}mail\ address: jef.teugels@wis.kuleuven.ac.be}$