ASYMPTOTIC ANALYSIS OF A MEASURE OF VARIATION
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ABSTRACT. Let X;,47 = 1,...,n be a sequence of positive independent identically dis-
tributed random variables and define
T o XI+X2+...+X2
T+ Xt X))

Utilizing Karamata theory of functions of regular variation, we determine the asymptotic
behavior of arbitrary moments E(T5) (k € N) for large n, given that X satisfies a tail
condition, akin to the domain of attraction condition from extreme value theory. As a
side product, the paper offers a new method for estimating the extreme value index of
Pareto-type tails.

1. INTRODUCTION

Let X;, i =1,...,n be a sequence of positive independent identically distributed (i.i.d.)
random variables with distribution function F' and define

X2+ X2+...+ X2

(X1 +Xo+...+ Xp)?%

The asymptotic behavior of E(T,) was investigated in [5], simplifying and generalizing
earlier results in [4] and [6].

In this paper we extend several results of [5] and derive the limiting behavior of arbitrary
moments E(T¥) (k € N). This is achieved by using an integral representation of E(T¥) in
terms of the Laplace transform of X7, which is derived in Section 2.

Most of our results will be derived under the condition that X; satisfies

(2) 1—F(z) ~z~%%(z), =T o0

where @ > 0 and £(z) is slowly varying, i.e. limy oo £(tz)/4(z) = 1Vt > 0, seee.g. [3]. It is
well known that condition (2) appears as the essential condition in the domain of attraction
problem of extreme value theory. For a recent treatment, see [2]. A distribution satisfying
(2) is called of Pareto-type with index o. When o < 2, then the condition coincides with
the domain of attraction condition for weak convergence to a non-normal stable law. It is
then obvious that for 8 > 0,

(3) B(X{) = ps=p /000 2711 - F(z)) dz < 00

will be finite if § < « but infinite whenever 8 > «. For convenience, we define y := 1 and
fhi= .

(1) T, :=
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The results of this paper are based on the theory of functions of regular variation (see e.g.
[3]). Clearly, if E(X;) = oo, both the numerator and the denominator in (1) will exhibit
an erratic behavior, whereas for E(X;) < oo and E(X?) = oo this is the case only for the
numerator. The results in Section 3 quantify this effect.

As a by-product, the results of this paper suggest a new method for estimating the ex-
treme value index of Pareto-type distributions from a data set of observations, which is
discussed in Section 4.

The quantity 7, is a basic ingredient in the study of the sample coefficient of variation
of a given set of independent observations X, ..., X, from a random variable X, which
is a frequently used risk measure in practical applications. In [1], this connection will
be used to derive asymptotic properties of the sample coefficient of variation, including a
distributional approach.

2. PRELIMINARIES

Let ¢(s) := E(e™*X1) = [7° e **dF(z), s > 0 denote the Laplace transform of X;. Then,
following an idea of [5], one can use the identity

L = L/ooeswsﬁlds, >0
zf T(B) Jo

and Fubini’s theorem to deduce that

1 1 *°
E— = —)/0 P (s) ds.

xf T
More generally, for i.i.d. random variables Xi,...,X,, one obtains the representation
formula
n Xkl -1 ki+...+kn o) n ok;
(4) E o &, - Y / Ik 2) g,
(X1 +Xo+ ...+ Xp)P r'(B) 0 41 Oski
for nonnegative integers k; (i =1,...,n).

In particular, by symmetry

o XI4+ X34+ X2

) BT, = Bt —n [T s (0 s,

which formed the basis for the analysis in [5]. The representation (5) can be generalized
in the following way:

Lemma 2.1. For an arbitrary positive integer k,

k
(6) BT =) Y gy Bl k)
r=1 : T

=1 ky,okr>1
ki+...tk-—=k

B(na kla R k’l‘) = FE;Z{:) /0' 82k_1(10(2k1)(8) T (p(ri)(S) (pn—’l'(s) ds.
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Proof. For an arbitrary positive integer k we have

IEaf)::E(X?4-X§+n.m+AﬁV’::E: k! X xgke ... X2kn
(X1 +Xo+...+ X,)%k e kleoky! (X + Xo 4.+ X267
ki+...tkn=
where k; < k are nonnegative integers. Choose an n-tuple (ki,...,k;,) in the above sum
and let 7 denote the number of its non-zero elements (kj,,...,k;,) (clearly 1 < r < k).

There are exactly (:f) possibilities of extending (k;,,...,k;,) to an n-tuple by filling in
n — r zeroes; each of the resulting n-tuples leads to the same summand in (6). Thus we
can write

k 2k v 2k: 2%
k! n X 1){ 2... X 2kr
(7) BT =3 M ()E X A
S kbok! )T K Xt X%
k1+’...-’|—kr_:k ::B(n;c:,.._,k,)
so that (6) holds in view of (4). O

3. MAIN RESULTS

As promised, we will assume in the sequel that X; satisfies condition (2). Recall that
when a > 1 then p < oo while ps < 0o as soon as a > 2. The finiteness of y and/or uo
has its influence on the asymptotic behavior of the summands that make up the statistic
T,. It is therefore not surprising that our results will be heavily depending on the range
of a. We state a first and general result.

Lemma 3.1. If X; has a regularly varying tail with index o > 0 (i.e. 1—F(z) ~ x~*4(z)),
then the asymptotic behavior of the m-th derivative of the Laplace transform ¢(s) as s | 0
is given by

(8) ™ (s) ~ (=1)™al(m — @) s*™(1/s), m > o

Proof. Let x(s) := [;"e™**(1 — F(x)) dz. Since 1 — F(z) ~ z~*(z), it follows that for
k>a-1

(=1)Fx B () = / e (1 = F(z))dz ~T(k+1—a)s (1 - F(%)) as s — 0.
0
Since ¢(s) =1 — s x(s), we have for m > 1

o™ (5) = —mx™ =V (s) — s x™(s),

so that for m > «

Sm(p(m)(s) _ Smx(mfl) (8) B gm+1 X(m)(s)
1-F(1) 1-F(1) 1-F(1)

~ (=D)"(mT(m—-—a)—-T(m+1-—a)) =(-1)"al'(m - a),

from which the assertion follows. O
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Theorem 3.1. If Xy belongs to the domain of attraction of a stable law with index «,
O0<a<l,then for all k>1

9 lim E(TF) = —~ I
9) Jim E(T}) = (2k);1rr(1—a)r (r, k),
where G(r, k) is the coefficient of z* in the polynomial
T
k—r+1 .
> He
=7

Proof. From 1 — F(z) ~ z~“(z) it follows that 1 — ¢(s) ~ ['(1 — ) s*4(2) (see e.g.
Corollary 8.1.7 in [3]). Moreover, for any sequence (an)n>1 with a, — oo we have

n(5y — nloge(s/an) o, g (-(s/an) - exnlm () ¢ (%) (1 —
e (—) =¢e e exp| n(a> E(S>I‘(1 a)).

anp n

Choose (an)n>1 such that

(10) na,*£L(a,)I'(1 —a) =1 forn — oco.
Then for all s > 0

: n i _ s
g G =
We will now make use of the representation (6) for E(T¥). We have to investigate the
asymptotic behavior of B(n, k1, ..., k). The change of variables s = t/a,, together with an
application of Potter’s Theorem [3, Th.1.5.6], Lebesgue’s dominated convergence theorem
and Lemma 3.1 leads to

_ (?) [t 2t (2k1) t (2kr) t nrt
B(n,ki,..., k) = %T%)/O o @ o )Y o )? o dt

—_——
— et
o () 0o /4 \2k-1 ;4 \Ta—2k _ /an r )
= o — - T(2k; — ~t
a,T'(2k) /0 (an> (an) ¢ ( P ) 1:[ (2kj —a) | e dt

- o’ ngl F(2kj B CV) (TrL) er(an) /oo & a—1 eft"‘ dt
P(Qk‘) an"® 0

~ NG )
-~

—T(1—a)~"/r! :(r:rl)!/a

a™ ! [[;=1 T(2k; — @)
rT(1—a)"T(2k)

Summing up over all 7 =1,...,k in (6), we arrive at
k o1
I'(2k; — a)
11 lim E Tk 7.
(11) i B 2k—1'TZ:17"I‘1—a kzk:>1 1:[
1+ T -

ki+...+kr=k
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Now observe that

Gk = 3 Hir(”gj!‘“)

ki1+...+kr=k

can be determined by generating functions. Concretely, if we look at the r-fold product
I'4 — « I'em —« !
(F(2—a)$+7( )$2+...+7( )xm>

2! m!
for m sufficiently large, then G(r, k) can be read off as its coefficient of z*, since the kth
power exactly comprises all contributions of combinations k1,..., k. > 1 with k1+. . .+k, =
k in the above sum. It suffices to choose m = k—r+1, since larger powers do not contribute
to the coefficient of 2* any more. Hence Theorem 3.1 follows from (11). O

Remark 3.1. For k = 1, we obtain ILm E(T,) = 1 — a, which is Theorem 5.3 of [5]. The
n—,oo

limit of moments of higher order can now be calculated from (9):

lim B(T?) = §(1 - 0)(3 - 20),

lim E(T3) = =(1 — a)(15 — 1T + 502),

n—oQ

lim E(T}}) = 15z (1 — @)(105 — 155 + 79 o® — 14 03),

n—oQ

lim E(T?) = g5z (1 — @) (945 — 1644 o + 1106 o® — 344 o® + 42 0*).
n—oo

0.4

0.2

0.2 04 06 08 1’

FIGURE 1. lim,,_,o E(TF) as a function of a (k = 1,...,5 from top to bottom)

The following result generalizes Theorem 5.5 of [5], where the case k = 1 was covered:

Theorem 3.2. If X, belongs to the domain of attraction of a stable law with index a =1
and E(X1) = oo, then for all k > 1

(12) BTN ~ g1 p

where £(z) = [*(6(t)/t) dt and (an)n>1 is a sequence satisfying an ~ nl(ay).

Proof. Since X; belongs to the domain of attraction of a stable law with index a = 1, we
have 1— F(z) ~ z'¢(z) for some slowly varying function £(z). Moreover 1 —¢(s) ~ s {(1)
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with £(z) = [“(é(t)/t) dt (see e.g. [3]). Note that £(z) is again a slowly varying function.
For any sequence (an)n>1 with a, — oo we have

P (=) = enlogel(s/an) o, g n(1-0(s/an))  exp[—n (i) g(a_n)]'

an an s

If we choose a,, such that

(13) na; l(a,) =1 forn — oo,
then
(14) lim o"(—) = e *.

n—00 an

Take a, as in (13) and replace s by t/a, in the representation (6). An application of
Potter’s Theorem, Lebesgue’s dominated convergence theorem and Lemma 3.1 yields

_ () (1 \* (2k1) [ 1 @) (L n—r(t
B(nakla"'akT) — anF(2k) /(; a ® a "2 a 2 an dt
~————

— et

st o (i) () 7o () Tres-n) e

Jj=1

1= T2k — 1) n ¢ (an) /°° 1ot gt
0

r!T'(2k) an”
—_
=(r-1)!

[1j=:T(2k; - 1) (ﬁ(an)y

rT'(2k) U(an)

Note that E(an)/g(an) — 0 for n — oo and thus, opposed to the case a < 1, only the
summand with 7 = 1 contributes to the dominating asymptotic term of (6). Therefore we
obtain

1 (an)

2k — 1 {(ay,

>

E(TF) ~

n

~—

O

Theorem 3.3. Let Xy belong to the domain of attraction of a stable law with index «,
1<a<?2and p:=E(X1) <oo. Then for all k > 1

T2k — a)T'(1 + )

1 E(T¥) ~ '=%¢(n).
(15) (T ~ = g )
Proof. Since y is finite, it follows that
(16) li_)m " (t/n) = e M for all t > 0.

However, in view of (16), we will use the change of variables s = ¢/n in the representa-
tion (6). By virtue of Potter’s Theorem, Lebesgue’s dominated convergence theorem and
Lemma 3.1 we then obtain
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= TN on (1)L g (1) g [
B(n,kl,...,kr) = TLF(Q]{;)/O E () H RN E © H dt

AT =) O [ e g
0

T'(2k) L
~nr=0e )/ D ay/ure
r T P
N o I'(ra) Hj:lF(Zk] a) nr(ka)er(n)_

rlureT'(2k)

Hence the first-order asymptotic behavior of (6) is solely determined by the term with

r =1 and we obtain

T2k — a)T'(1 + )
['(2k) p©

E(TF) ~ n' % (n).

O

Remark 3.2. For the special case k = 1, (15) yields E(T},) ~ W n!~%(n), which
is Theorem 5.1. of [5].

We pass to the case a > 2.

Theorem 3.4. Let 1 — F(z) ~ z *{(x) for some slowly varying function £(x) and a > 2.
Then for all integers k < a — 1

(17) E(TF) ~ (%)k nk

and for k> a —1
L2k — a)I'(1 + )

(18) R

nl=%0(n).

If k=a—1, then
(i) (17) holds if £(z) = o(1) (and in particular if E(X*+1) < o0),

k
(ii) EB(TF) ~ ((%) + CW) n~* holds if £(z) ~ C for a constant C,

(iii) and else (18) holds.
Proof. Let us look at the quantity B(n,k1,...,k,). By Lemma 3.1 and the Bingham-

Doney Lemma, (see e.g. [3, Th.8.1.6]) the asymptotic behavior of ¢(™)(s) at the origin is
given by

al(m —a)s* ™(1/s) ifm>a
(=)™ o™ (s) ~ & al(1)s) if m = o and B(X7) = 00
P, ifm < aand E(XT") < oo
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where £(z) = Jo (€(u)/u)du is itself a slowly varying function. For simplicity, let us first
assume that o ¢ N. Then one can conclude in an analogous way as in the proof of Theorem
3.3 that the asymptotic behavior of B(n, k1, ...,k,) is given by

B(n,ky,... k) ~ Cpnrem—2k—u)mp)

where r1 is the number of integers among ki, ..., k, that are greater than «/2, uy is the
sum of these and C is some constant. It remains to determine the dominating asymptotic
term among all possible B(n, k1,...,k.): If r1 > 0, then r; = 1, uy = k and thus r = 1
yields the largest exponent, so that the asymptotic order is n'~®£(n). Note that r; > 0 is
possible for 2k > « only. For r; = 0, on the other hand, r =k and thus k; = ... =k, =1
dominates leading to asymptotic order n~*. Hence the asymptotically dominating power
among B(n,ki,...,k;) is given by max(1l — «, —k). From this we see that for £k < o — 1,
r = k dominates and we obtain from (6)

* uS T (2k) %
E(TY) ~ ket o e
(Tw) ~ & kT (2k) n2k y2k w? "

Alternatively, if £ > a — 1, the term with 7 = 1 dominates and we obtain (18) in just the
same way as in Theorem 3.3.

Finally, the above conclusions also hold for @ € N except when k& = a — 1. In the latter
case the slowly varying function #(z) determines which of the two terms n!~%¢(n) (corre-
sponding to 7 = 1) and n~* (corresponding to = k) dominates the asymptotic behavior:
if £(z) = o(1) (which due to E(X¥) ~ (k + 1) Jy 7 €(z) dz is in particular fulfilled for
E(X¥1) < 00), the second one dominates. If £(x) ~ const., then both terms matter and
the assertion of the theorem follows. O

Corollary 3.1. If 1 — F(z) ~ z 24(z), then for k > 2
1 l(n)
(k—1)(2k—1p? n

and

Proof. One can easily verify that Theorem 3.4 remains true for &« = 2 except for £k = 1
in the case E(X?) = oo. In the latter case obviously r = 1 and one obtains (using

¢"(s) ~20(1/s))

200 o 2
E(T,) ~ B(n,1) ~ ”nez(n)/ tetgp o 2 K.
0

which is already contained in [5, Theorem 5.2]. O

Remark 3.3. One might wonder whether a general limit result for E(T) for X; in the
domain of attraction of a normal law (in the spirit of Theorem 5.2 of [5] for k¥ = 1) can be
obtained with the integral representation approach used in this paper. This is however not
the case: From [ y?dF(y) ~ l2(x) (where £5(z) is a slowly varying function) it follows

by partial integration that ¢(*%)(s)/ly(1/s) = o(s?> %) for k > 1 as s — 0, but the latter
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E(T5) Var (Ty,) Var (T,,) /E(T,)
0<ac<l 1-« a(l-a) a
= Yan) 1 Yan) 1
a=1 Z(an) (_> O) 3 g(an) (_> O) 3
1<a<?2 F<2—a;g<l+a> ni-ag(n) | TU-a0ta) pi-apy (3-a)2-a)
. - ;
o= i B Ldn (5 0)
2<a<4 e % n1=4(n) % n—a(n)
a>4 e pap®—p3pP 4 pd—Appops 1 | pap’/pe—pop®+4pd—duus 1
= IJ2"L /JG 3 “4 v

TABLE 1. First order asymptotic terms of E(T},), Var(7,) and
Var (T,,) /E(T,) for 1 — F(z) ~ x~*/(x) as a function of «

is not strong enough to identify the dominating term among the B(n, k1, ..., k,) without
any further assumptions on the distribution of X;.

As an illustration of the results of this paper, Table 1 gives the first order asymptotic
terms of E(T;,), Var (T,,) and the dispersion Var (T;,)/E(T),,) as a function of o. Note that
the entries for o > 2 have been obtained by calculating second-order asymptotic terms.
The result for a > 4 in the table actually holds whenever u4 < 0o, since in this case the
derivation of second-order terms does not rely on the assumption of regular variation and

. 2 10u3—3u2u>—8 +u? 2
one obtains E(Tg) = %# + ( Wy —3pan uﬁulnﬂs 12 lt4)n_13 _l_O(n%) and E2(Tn) _ Z_?in_lz n
6us—4 —2p?
( My HNZI;S 4 Uz)n% +O(n_14))
From Table 1 we see that the dispersion of T, is a continuous function in « with its

maximum in « = 1 (see Figure 2).

I'im Var (To%) /E(Tp¥)

0.3
0.25
0.2
0.15
0.1
0.05

FIGURE 2. Limit of the dispersion of T}, as a function of «

4. ESTIMATION OF THE EXTREME VALUE INDEX FOR PARETO-TYPE TAILS

The results of Section 3 also give rise to an alternative and seemingly new method for
estimating the extreme value index 1/a for Pareto-type tails 1 — F(z) ~ 2~ *¢(z) with
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0 < a < 2 from a given data set of independent observations (see e.g. [2] for other estima-
tors of the extreme value index). In fact, plotting n 7, against n will tend to a line with
slope 1 — @, if 0 < a < 1 and plotting log(n T},) against logn will tend to a line with slope
2 — q, if 1 < a < 2. The asymptotic behavior of higher order moments of nT,, available
from Section 3 can then be used to increase the efficiency of the estimation procedure.
At the same time, this provides a technique to test the finiteness of the mean of a distri-
bution in the domain of attraction of a stable law.

Acknowledgement. The authors would like to thank Sophie Ladoucette for a careful
reading of the manuscript.
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