Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains.

Détails

Ressource 1Télécharger: Development and evaluation of deep learning–based segmentation of histologic structures in the kidney cortex with multiple histologic stains.pdf (15801.44 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_6E8CC43CC1A4
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains.
Périodique
Kidney international
Auteur⸱e⸱s
Jayapandian C.P., Chen Y., Janowczyk A.R., Palmer M.B., Cassol C.A., Sekulic M., Hodgin J.B., Zee J., Hewitt S.M., O'Toole J., Toro P., Sedor J.R., Barisoni L., Madabhushi A.
Collaborateur⸱rice⸱s
Nephrotic Syndrome Study Network (NEPTUNE)
Contributeur⸱rice⸱s
Sedor J., Dell K., Schachere M., Negrey J., Lemley K., Lim E., Srivastava T., Garrett A., Sethna C., Laurent K., Appel G., Toledo M., Barisoni L., Greenbaum L., Wang C., Kang C., Adler S., Nast C., LaPage J., Stroger J.H., Athavale A., Itteera M., Neu A., Boynton S., Fervenza F., Hogan M., Lieske J., Chernitskiy V., Kaskel F., Kumar N., Flynn P., Kopp J., Blake J., Trachtman H., Zhdanova O., Modersitzki F., Vento S., Lafayette R., Mehta K., Gadegbeku C., Johnstone D., Quinn-Boyle S., Cattran D., Hladunewich M., Reich H., Ling P., Romano M., Fornoni A., Bidot C., Kretzler M., Gipson D., Williams A., LaVigne J., Derebail V., Gibson K., Froment A., Grubbs S., Holzman L., Meyers K., Kallem K., Lalli J., Sambandam K., Wang Z., Rogers M., Jefferson A., Hingorani S., Tuttle K., Bray M., Kelton M., Cooper A., Freedman B., Lin J.J.
ISSN
1523-1755 (Electronic)
ISSN-L
0085-2538
Statut éditorial
Publié
Date de publication
01/2021
Peer-reviewed
Oui
Volume
99
Numéro
1
Pages
86-101
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S.
Publication Status: ppublish
Résumé
The application of deep learning for automated segmentation (delineation of boundaries) of histologic primitives (structures) from whole slide images can facilitate the establishment of novel protocols for kidney biopsy assessment. Here, we developed and validated deep learning networks for the segmentation of histologic structures on kidney biopsies and nephrectomies. For development, we examined 125 biopsies for Minimal Change Disease collected across 29 NEPTUNE enrolling centers along with 459 whole slide images stained with Hematoxylin & Eosin (125), Periodic Acid Schiff (125), Silver (102), and Trichrome (107) divided into training, validation and testing sets (ratio 6:1:3). Histologic structures were manually segmented (30048 total annotations) by five nephropathologists. Twenty deep learning models were trained with optimal digital magnification across the structures and stains. Periodic Acid Schiff-stained whole slide images yielded the best concordance between pathologists and deep learning segmentation across all structures (F-scores: 0.93 for glomerular tufts, 0.94 for glomerular tuft plus Bowman's capsule, 0.91 for proximal tubules, 0.93 for distal tubular segments, 0.81 for peritubular capillaries, and 0.85 for arteries and afferent arterioles). Optimal digital magnifications were 5X for glomerular tuft/tuft plus Bowman's capsule, 10X for proximal/distal tubule, arteries and afferent arterioles, and 40X for peritubular capillaries. Silver stained whole slide images yielded the worst deep learning performance. Thus, this largest study to date adapted deep learning for the segmentation of kidney histologic structures across multiple stains and pathology laboratories. All data used for training and testing and a detailed online tutorial will be publicly available.
Mots-clé
Biopsy, Coloring Agents, Deep Learning, Kidney, Kidney Cortex/diagnostic imaging, computerized morphologic assessment, deep learning, digital pathology, kidney histologic primitives, large-scale tissue interrogation, renal biopsy interpretation
Pubmed
Web of science
Open Access
Oui
Création de la notice
02/09/2020 11:56
Dernière modification de la notice
25/06/2024 6:31
Données d'usage