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Translational Statement

The assessment of renal biopsy is unique compared with
other surgical pathology specimens because of the va-
riety of stains routinely used. Morphologic assessment of
histological preparations relies on the quality of the
preparations itself, as well as the expertise of the
pathologist in identifying normal and pathological
structures. The authors demonstrate that “deep
learning–based convolutional neural networks” may be
employed for efficient and reliable segmentation of
histologic structures across different stains of normal
renal parenchyma using the Nephrotic Syndrome Study
Network whole slide images. This dataset was curated
from 38 histology laboratories and reflects substantial
The application of deep learning for automated segmentation
(delineation of boundaries) of histologic primitives (structures)
from whole slide images can facilitate the establishment of
novel protocols for kidney biopsy assessment. Here, we
developed and validated deep learning networks for the
segmentation of histologic structures on kidney biopsies and
nephrectomies. For development, we examined 125 biopsies
for Minimal Change Disease collected across 29 NEPTUNE
enrolling centers along with 459 whole slide images stained
with Hematoxylin & Eosin (125), Periodic Acid Schiff (125),
Silver (102), and Trichrome (107) divided into training,
validation and testing sets (ratio 6:1:3). Histologic structures
were manually segmented (30048 total annotations) by five
nephropathologists. Twenty deep learning models were
trainedwith optimal digitalmagnification across the structures
and stains. Periodic Acid Schiff-stained whole slide images
yielded the best concordance between pathologists and deep
learning segmentation across all structures (F-scores: 0.93 for
glomerular tufts, 0.94 for glomerular tuft plus Bowman’s
capsule, 0.91 for proximal tubules, 0.93 for distal tubular
segments, 0.81 for peritubular capillaries, and 0.85 for arteries
and afferent arterioles). Optimal digitalmagnificationswere 5X
for glomerular tuft/tuft plus Bowman’s capsule, 10X for
proximal/distal tubule, arteries and afferent arterioles, and 40X
for peritubular capillaries. Silver stained whole slide images
yielded theworst deep learningperformance. Thus, this largest
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study to date adapted deep learning for the segmentation of
kidney histologic structures across multiple stains and
pathology laboratories. All data used for training and testing
and a detailed online tutorial will be publicly available.
Kidney International (2021) 99, 86–101; https://doi.org/10.1016/
j.kint.2020.07.044
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morphologic, technical, and stain heterogeneity. The
findings provide useful insights, along with source code
and data, which will help readers overcome challenges
in this space. Taken together, this work represents a
technical foundation from which future pathology tools
may be built to enable actionable clinical decision sup-
port tools for better disease characterization and risk
assessment in pathology workflows.
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R enal biopsy interpretation remains the gold standard for
the diagnosis and staging of native and transplant kid-
ney diseases.1–3 Although visual morphologic assessment

of the renal parenchyma may provide useful information for
disease categorization, manual assessment and visual
quantification by pathologists are time-consuming and
limited by poor intra- and interreader reproducibility.4–7

The introduction of digital pathology in nephrology clinical
trials8 has provided an unprecedented opportunity to test
machine learning approaches for large-scale tissue quantifica-
tion efforts. Standardization of pathology material acquisition
has allowed worldwide consortia to establish digital pathology
repositories containing thousands of digital renal biopsies for
the evaluation of kidney diseases in adults and children, across
diverse populations and pathology laboratories.4,9,10 This large-
scale quantification, however, presents some new challenges.
Unlike cancer pathology where hematoxylin and eosin (H&E)
is generally the sole stain employed, renal biopsies require
routine special stains such as Jones and periodic acid–
methenamine silver (SIL), periodic acid–Schiff (PAS), and
Masson trichrome (TRI).3,11,12 Additionally, the multicenter
nature of such consortia is reflected in the heterogeneity of
preparations (e.g., integrity of tissue sections and quality of the
stains).

Deep learning (DL) is a machine learning approach that
recognizes patterns in images through a network of connected
artificial neurons. DL uses deep convolutional neural net-
works (CNNs) that are capable of identifying patterns in
complex histopathology data prone to such heterogeneity. U-
Net is a popular semantic-based DL network validated in the
context of biomedical image segmentation that takes spatial
context of pixels into consideration as opposed to naive pixel-
level DL classifiers.13 The output of U-Net is a high-resolution
image (typically the same size as the input image) with labeled
class predictions at the pixel level.14–16

In this study, we evaluated the feasibility of DL approaches
for automatic segmentation of 6 renal histologic primitives on
4 stains, using the digital renal biopsies from a multicenter
Nephrotic Syndrome Study Network (NEPTUNE) dataset.9

In addition, we describe annotation and training consider-
ations, specifically as they relate to DL algorithms for digital
nephropathology. To the best of our knowledge, this is the
largest comprehensive study to address applicability of DL
approaches employable for kidney pathology images gener-
ated in a multicenter setting.

RESULTS
DL performance per histologic primitive

Glomerular tuft. The classifier performed consistently
across the 4 stains with only marginal differences in F-score
and Dice similarity coefficient (DSC). A 5� digital magnifi-
cation on PAS and H&E stains (Table 1, Figures 1 and 2)
resulted in optimal detection and segmentation.

Glomerular unit. Consistent quantitative performance
metric with F-score and DSC over 0.89 were observed across
all stains, with optimal results for detection and segmentation
Kidney International (2021) 99, 86–101
using 5� digital magnification on PAS and SIL stains (Table 1,
Figures 1 and 2).

Proximal tubular segments. Segmentation results varied
little across the stains (F-score from 0.89 to 0.91, and DSC
from 0.88 to 0.95), with PAS, SIL, and TRI stains having
better performance than the H&E stain. A 10� magnification
was optimal for detection and segmentation across all stains.
(Table 1, Figures 1 and 3).

Distal tubular segments. Segmentation results were highly
variable across all the stains: F-scores were 0.78 and 0.81 for
H&E and TRI, respectively, and 0.91 and 0.93 for SIL and PAS,
respectively. DSC scores were 0.78 and 0.82 for H&E and TRI,
and 0.92 and 0.93 for SIL and PAS. Optimal results for detection
and segmentation were obtained using 10� digital magnification
on PAS and SIL stains (Table 1, Figures 1 and 3).

Arteries/arterioles. Artery/arteriole segmentation was vari-
able across stains, with F-scores ranging from 0.79 to 0.85 across
TRI, H&E, and PAS staining and DSC ranging from 0.85 to 0.90.
Optimal results for detection and segmentation were obtained
using 10� on PAS stain (Table 1, Figures 1 and 4).

Peritubular capillaries. Optimal results for detection and
segmentation were obtained using 40� magnification on PAS
stain (Table 1, Figures 1 and 4). Qualitative segmentation
results on the testing cohort show that most of the large-sized
peritubular capillaries were thin and long as they were cut
tangentially from the biopsy. Although the size, shape, and
textural presentation of peritubular capillaries varied
(Figure 5a), the U-Net model was able to detect and segment
peritubular capillaries of varying sizes and shapes (Figure 5).
The classifier tends to perform better on thin and long, small-
to medium-sized capillaries. However, capillaries with size
less than 40 pixels (167 mm2) failed to be identified or were
inaccurately segmented.

Validation of DL models using nephrectomies. An F-score
of 0.93 was obtained for 191 glomerular units, 0.90 for 1484
proximal tubules, 0.93 for 1251 distal tubules, 0.71 for 269
arteries/arterioles (Figure 6), and 0.90 for 3784 peritubular
capillaries (Figure 7). The rare globally sclerotic glomeruli
and atrophic tubules present in the sections were not
segmented by the DL network.

DL segmentation performance across sites and artifacts. See
Supplementary Figure S4.

DL performance as a function of number of training
exemplars
The rate of improvement of the network performance as a
function of the number of training exemplars was observed to
be different across histologic primitives. The number of ex-
emplars needed to maximize network performance increases
substantially from glomerular tufts to distal tubular segments,
arteries/arterioles, and finally to peritubular capillaries
(Figure 8). For larger structures such as glomerular tufts, it
was observed that only 60 training samples were necessary to
achieve an F-score of 0.89, with a 0.02 increase using 183
tufts. For smaller and largely represented structures such as
distal tubules, a 0.07 increase in F-score was observed by
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Table 1 | Performance metrics: F, DSC, TPR, and PPV for structurally normal histologic primitives at optimal digital
magnification

Stain H&E PAS SIL TRI

Histologic primitive Optimal mag F DSC TPR PPV F DSC TPR PPV F DSC TPR PPV F DSC TPR PPV

Glomerular tuft �5 0.91 0.93 0.89 0.93 0.96 0.97 0.94 0.93 0.90 0.96 0.91 0.87 0.89 0.94 0.91 0.89
Glomerular unit �5 0.92 0.90 0.88 0.93 0.93 0.96 0.95 0.94 0.92 0.98 0.89 0.90 0.89 0.91 0.93 0.92
Proximal tubular segment �10 0.89 0.95 0.93 0.84 0.91 0.90 0.98 0.92 0.90 0.88 0.96 0.90 0.90 0.89 0.97 0.91
Distal tubular segment �10 0.78 0.78 0.83 0.80 0.93 0.92 0.96 0.93 0.91 0.93 0.89 0.90 0.81 0.82 0.80 0.84
Peritubular capillaries �40 — — — — 0.81 0.71 0.87 0.78 — — — — — — — —

Arteries/arterioles �10 0.83 0.85 0.84 0.83 0.85 0.90 0.93 0.82 — — — — 0.79 0.86 0.89 0.86

F, F-score; DSC, dice similarity coefficient; H&E, hematoxylin and eosin; mag, magnification; PAS, periodic acid–Schiff; PPV, positive predictive rate; SIL, periodic acid–
methenamine silver; TPR, true positive rate; TRI, Masson trichrome.
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increasing the number of exemplars from 507 to 2789. For
structures such as arteries/arterioles with varying sizes, the F-
score increased by 0.13, increasing the number of exemplars
from 258 to 864. A significant increase in F-score from 0.27 to
0.81 was observed with peritubular capillaries by increasing
the number of exemplars 2.5 times (i.e., from 4273 to
10,975).

DISCUSSION
The assessment of renal biopsy is unique compared with
other surgical pathology specimens because of the variety of
stains routinely used. Morphologic assessment relies on the
quality of the preparations, the pathologists’ expertise in
detecting the individual structures and associated changes,
and quantitative or semiquantitative metrics used to capture
the extent of tissue damage. Visual histologic quantitative
assessment such as counting, distribution, and morphometry
of certain histologic primitives are known to be robust pre-
dictors of outcome for various kidney diseases.10,17–23 How-
ever, quantitative analysis remains a challenge for the human
eye. Some of these primitives (e.g., peritubular capillaries)
cannot be measured visually or manually and warrant the aid
of computational algorithms. Recent studies have suggested
Figure 1 | Optimally digitally magnified regions of interest. The optim
of 256 � 256 px: periodic acid–Schiff glomerular unit and tuft, original
magnification �10; peritubular capillary, original magnification �40; and
optimize viewing of this image, please see the online version of this art
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that computer vision tools can serve as triage and decision
support tools for disease diagnosis with digital pathology.24–27

Thus, automated image analysis tools need to be imple-
mented and integrated into the pathology workflow for effi-
cient and reliable segmentation of histologic primitives across
multiple types of stains. DL segmentation tools could greatly
facilitate derivation of not only the visual but also subvisual
histomorphometric features (e.g., shape, textural, and graph
features) for correlation with diagnosis and outcome.28–30

This study attempts to address the challenges of
computational renal pathology for large-scale tissue
interrogation by providing DL algorithms for thorough
annotation of 6 histologic primitives on renal parenchyma
of minimal change disease (MCD), using whole slide
images (WSIs) of 4 stains and generated across 29
NEPTUNE enrolling centers. In the past few years, several
studies have demonstrated the utility of DL networks for
low-level image analyses (i.e., detection, segmentation,
and classification of histologic primitives) and high-level
complex prognosis and prediction tasks.31–35 Our study
is the largest, comprehensive DL study of kidney biopsies,
presenting algorithms that were developed on different
stains and using a large number of annotated images,
al magnification varied for each histologic primitive using patch size
magnification �5; proximal and distal tubular segment, original
arteries/arterioles, original magnification �10 (not shown). To

icle at www.kidney-international.org.
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Figure 2 | Deep learning (DL) segmentation of glomerular tuft and unit. DL segmentation for glomerular unit and tuft on whole slide
images of formalin-fixed and paraffin-embedded sections from minimal change disease, stained with hematoxylin and eosin (H&E), periodic
acid–Schiff (PAS), trichrome (TRI), and silver (SIL). For each stain, the original image overlaid with ground truth is presented on the left,
and the DL segmentation is presented on the right. The positive classes are highlighted in bright pink from green transparent mask overlaid on
original image. The DL output is specifically tracing the Bowman capsule for glomerular unit and the profile of the capillary wall for the
glomerular tuft. The glomerular units and tufts were correctly identified across all types of stains. To optimize viewing of this image, please see
the online version of this article at www.kidney-international.org.
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Figure 3 | Deep learning (DL) segmentation of proximal and distal tubular segments. DL segmentation for tubular segments on whole
slide images of formalin-fixed and paraffin-embedded sections from minimal change disease, stained with hematoxylin and eosin (H&E),
periodic acid–Schiff (PAS), trichrome (TRI), and silver (SIL). For each stain, the original image overlaid with ground truth is presented on the left,
and the DL segmentation is presented on the right. The positive classes are highlighted in bright pink from green transparent mask overlaid on
original image. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
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compared with those previously published. The primary
conclusions and significant findings from our work are
described next.
90
Comparison with current literature
The differences between previous studies36–44 and our contri-
butions are summarized in the Supplementary Figure S6.
Kidney International (2021) 99, 86–101
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Figure 4 | Deep learning (DL) segmentation of arteries/arterioles and peritubular capillaries. DL segmentation for arteries/arterioles on
whole slide images of formalin-fixed and paraffin-embedded sections from minimal change disease, stained hematoxylin and eosin (H&E),
periodic acid–Schiff (PAS), trichrome (TRI), and silver (SIL), and for peritubular capillaries on whole slide images of formalin-fixed and paraffin-
embedded sections stained with PAS, with the original image overlaid with ground truth on the left and the DL segmentation on the right. The
positive classes are highlighted in bright pink from green transparent mask overlaid on original image. To optimize viewing of this image,
please see the online version of this article at www.kidney-international.org.
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Previously published studies focus on a single histologic
primitive and a single stain. For example, Marsh et al. evaluated
CNNs for detection of global glomerulosclerosis in transplant
kidney frozen sections stained with H&E36; Kanna et al.
Kidney International (2021) 99, 86–101
evaluated CNNs to discriminate normal, segmentally and
globally sclerosed glomeruli from trichrome stained formalin-
fixed and paraffin-embedded kidney sections37; Gallego et al.
applied DL to detect glomeruli on PAS-stained sections; Bel
91
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Figure 5 | Deep learning (DL) Segmentation performance in relation to the morphologic heterogeneity of peritubular capillaries
(PTCs). (a) Most of the peritubular capillaries were small when measured in number of pixels. The size of the peritubular capillaries has an
exponential distribution with a long tail from small to large. Each pixel is 0.06 mm2 on tissue, and as observed, most of the PTCs are under 90
mm2. Examples of DL performance on small (c), medium (b), and large (d,e) PCs. To optimize viewing of this image, please see the online
version of this article at www.kidney-international.org.
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et al. demonstrated segmentation of normal and pathologic
histologic structures using PAS stained WSIs of nephrectomy
cortex tissue.39 Temerinac-Ott et al. demonstrate a DL
approach to improve glomerular detection on 1 staining using
results from differently stained sections of same tissue.38 Our
DL networks on all 4 stains represent a first step for future
clinical deployment allowing for the detection, segmentation,
and ultimately quantification of several normal histologic
primitives in all stains routinely used for diagnostic purposes.

Another critical element that needs to be taken into
consideration before their use in large-scale DL networks is
how they can be applied to heterogeneous datasets. Our DL
models were trained and tested on a very heterogeneous set of
WSIs with preanalytic variations in tissue acquisition, pro-
cessing, and slide preparation using 4 stains, thus facilitating
the rigorous evaluation of the applicability of the DL
approach in a multisite setting.

Different DL approaches have been used for the segmenta-
tion of histologic primitives, such as Gadermayr et al.’s
92
application of generative adversarial deep networks for stain-
independent glomerular segmentation.45 Bel et al. employed
cycle-consistent generative adversarial networks (cycle-
GANs) in DL applications for multicenter stain trans-
formation.40 Hermsen et al. has demonstrated U-Net based
segmentation of 7 tissue classes using 40 transplant biopsies
on PAS stain.42 Our approach, in this study, was to develop
multiple U-Net based DL networks using optimal digital
magnification and varying number of annotations across
primitives and stains.

All previous works have used relatively smaller number of
WSIs of renal biopsies/nephrectomies compared with our
study (Table 2). The use of a large WSI dataset allowed us to
provide insights to pathologists for generating well-annotated
training exemplars for each primitive and stain, as well as the
number of training exemplars required for best network
performance using U-Net CNNs (Figure 8).

Specificity of the segmentation of the individual histo-
logic primitives and their pathologic variation is critical for
Kidney International (2021) 99, 86–101
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Figure 6 | Deep learning (DL) segmentation of normal histologic primitives on periodic acid–Schiff nephrectomies. (a) Segmentation
of normal glomerular units. (b) Segmentation of proximal (yellow) and distal (green) tubules; rare atrophic tubules were detected by the DL
algorithms. (c) Segmentation of arteries/arterioles. To optimize viewing of this image, please see the online version of this article at www.
kidney-international.org.
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the deployment of DL models into clinical practice.42,43 The
DL networks generated in this work are specific to struc-
turally normal histologic primitives, such as those seen in
MCD or nephrectomies, and can be applied to both adult
and pediatric renal biopsies. When the DL networks were
tested on patches of renal parenchyma from nephrectomy
specimens, the specificity for the structurally normal his-
tologic primitives was maintained. The DL framework
presented in this study will also enable architecting of
networks in the future that are specifically focused on
Kidney International (2021) 99, 86–101
automated segmentation and assessment of structurally
abnormal histologic primitives and their correlation with
clinical outcomes.

DL-based ranking of different stains
Our study suggests that the PAS stain is best suited for
identification of structurally normal histologic primitives
using the U-Net model. This may be because PAS appears to
be consistently more homogeneous across pathology labora-
tories compared with TRI or SIL. PAS-stained WSIs highlight
93
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Figure 7 | Segmentation outputs of peritubular capillaries (PTCs) on periodic acid–Schiff (PAS) nephrectomies. (a) Formalin-fixed and
paraffin-embedded sections stained with PAS and CD34 (double stain). (b) Deep learning (DL) segmentation of peritubular capillaries on the
same section stained with PAS alone. There is overlap between the CD34 positive stain and the DL detection of peritubular capillaries. Overall,
the DL performance was similar to the segmentation accuracy on the testing set for minimal change disease. To optimize viewing of this
image, please see the online version of this article at www.kidney-international.org.
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the basement membranes of different structures, which in
turn provides superior definition of the boundary of each
single primitive to be segmented. For this reason, PAS was the
only stain used for segmentation of peritubular capillaries. On
the basis of our results, PAS and H&E stains showed better
performance for glomerular tuft and unit segmentation, PAS
and TRI for arteries/arterioles, PAS and SIL for tubular seg-
ments, and PAS for peritubular capillaries.

Optimal digital magnification for DL models
Our results suggest that with a unified patch size of 256 �
256, optimal magnification for the DL models was 5� for
glomeruli, 10� for tubules and vessels, and 40� for capil-
laries (Figure 1). Interestingly, most of the optimal magnifi-
cations were concordant with the magnifications that
pathologists tend to use when annotating the individual
primitives, except for glomeruli where the pathologists used
15� to 20�. Larger structures such as glomeruli, tubules, and
vessels were more precisely segmented by the network at 5�
to 10� magnification regardless of the stain. For smaller
structures such as peritubular capillaries, larger digital
magnification (40�) was required for accurate DL
segmentation.

DL segmentation performance across sites and artifacts
Heterogeneity of tissue preparation and lack of standardiza-
tion of the analytics is particularly relevant for multicenter
studies, where the pathology material is collected from several
laboratories. As expected, heterogeneity in tissue presentation
and glass, tissue, and scanning artifacts was observed, each
with variable contribution to the DL performance. For
example, although in general tissue artifacts had limited
impact on the DL networks, the thickness of the section
appeared to affect performance. The impact of individual
artifacts was also relative to the histologic primitive; for
example, glass artifacts showed a slight negative impact on DL
performance for arteries/arterioles and proximal tubules.
94
Additionally, there was variability in DL performance across
sites, and this variability appeared to be histologic primitive
dependent (Supplementary Figure S4).

DL performance as a function of number of training
exemplars
Our quantitative data validated the intuitive assumption that
more exemplars are needed for those primitives that are more
difficult to identify visually (i.e., tangentially cut arteries/ar-
terioles or primitives at the edge of the region of interest
[ROI]) (Figure 8). For those primitives that were too small or
ill defined (i.e. peritubular capillaries), curation and iterative
annotation was necessary to improve segmentation accuracy.
For segmentation of glomerular tufts, the network converged
to maximum accuracy with a small number (60–183) of
training exemplars; performance did not improve with in-
clusion of additional exemplars. For tubules and arteries/ar-
terioles segmentation, the corresponding networks showed
marginal to intermediate performance improvement with an
increasing number of exemplars. In contrast, a significant
increase in F-score and DSC (0.27–0.81) was observed with a
2.5-fold increase in the number of peritubular capillary ex-
emplars, a linear scope of F-score increase indicating even
better accuracy with more exemplars.
Interpreting segmentation results
Few false positives were observed in regions of interest with
artifacts (i.e. tissue folds, uneven staining), suggesting the
need for digital quality assessment of the slide images prior to
invocation of the computational models (Supplementary
Figure S4). In a few ROIs, the DL appeared to outperform
the pathologists—for example, when a small portion of an
artery/arteriole was at the edge of the ROIs and was not
manually annotated as ground truth by the pathologist
because they were visually difficult to detect. This can be
explained by the protocol used for segmentation of arteries,
Kidney International (2021) 99, 86–101
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Figure 8 | Model performance with increasing number of training annotations. Number of annotations versus deep learning model
performans. The model performance was measured as F-score, dice similarity coefficient (DSC), true positive rate (TPR), predictive positive
value (PPV). For histologic primitives such as glomerular tufts, only a small number of annotations was required to construct a robust classifier,
in contrast to peritubular capillaries where larger number of annotations were required. The performance metrics for peritubular capillary
segmentation increased linearly as more annotations were added. Arteries/arterioles and distal tubules had intermediate rates of convergence
with increasing number of annotations.
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where pathologists included only arteries where the wall
(tunica media and intima) and lumen were visible and
segmented the outer boundary of the tunica media. Thus, the
models, trained to detect the tunica media and intima of the
arteries correctly identified small fragments of tunica media
(arterial/arteriolar wall tangentially cut) as arteries/arterioles
despite the lack of a lumen (Figure 9).

Additionally, tubules in renal biopsy sections are more
often seen in transverse than longitudinal sections. The initial
classifier missed some longitudinally sectioned tubules,
mostly on H&E-stained images, because the tubule
Kidney International (2021) 99, 86–101
boundaries were less sharp, and longitudinally sectioned tu-
bules were underrepresented in the initial training set. To
facilitate and improve the process of annotation and the
network, the false-negative errors associated with the U-Net
segmentation of the tubules were visually identified and
manually refined by the pathologist, and the updated anno-
tations were returned to the network. A few small arterioles
were also incorrectly identified as distal tubules by the DL
algorithm (false positives) during the first iteration. These
false-positive annotations were removed by the pathologist
upon review of the initial classifier output and corrected
95



Table 2 | DL dataset showing the number of training and
testing region of interest images extracted from 459 WSIs of
125 MCD patients and the number of manually segmented
annotations for 6 structurally normal histologic primitives

Histologic primitive
for DL segmentation Stain

No. of manual
segmentations

No. of images (3000 3
3000 px) extracted from

the WSIs

Glomeruli H&E 240 Gt 150, Gu 150
PAS 373 Gt 228, Gu 204
SIL 267 Gt-124, Gu-124
TRI 316 Gt-138, Gu 137

Proximal tubular
segments

H&E 1329 108
PAS 1621 66
SIL 891 102
TRI 828 94

Distal tubular
segments

H&E 595 108
PAS 816 66
SIL 509 102
TRI 365 94

Peritubular capillaries PAS 19,280 121
Arteries/arterioles H&E 1153 344

PAS 508 238
TRI 957 422

DL, deep learning; Gt, glomerular tuft; Gu, glomerular unit (tuft þ Bowman capsule);
H&E, hematoxylin and eosin; mag, magnification; MCD, minimal change disease;
PAS, periodic acid–Schiff; SIL, periodic acid–methenamine silver; TRI, Masson tri-
chrome; WSI, whole slide images.
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images were returned to the network for retraining without
changing the experimental setup or the network parameters
to eliminate false positives and negative errors of the DL
algorithm.45

In line with current sharing guidelines, with this report, we
are making all of our data and accompanying ground truth
annotations publicly available for the community. Online
supplemental material released as part of this work is antic-
ipated to advance the field of computational renal pathology46

and provide best practices for generating annotations, aug-
mentations,47 magnifications and recommended stains to
perform segmentation tasks optimally.

In conclusion, this study represents a solid foundation
toward invoking machine learning classifiers to aid large-scale
tissue quantification efforts and the implementation of
machine–human interactive protocols in clinical and pa-
thology workflows. DL segmentation of histologic primitives
enables computational derivation of histomorphometric fea-
tures for enabling biopsy interpretation. Additionally, the
framework presented in this work will also pave the way for
development of new DL networks in the future that are
specifically geared toward (i) abnormal or pathologic histo-
logic primitives (i.e., global and segmental sclerosis, glomer-
ular proliferative features, collecting ducts, veins and
peripheral nerves, tubular atrophy, interstitial fibrosis, and
arteriosclerosis), (ii) renal cortex and medullary compart-
ments, and (iii) a wider spectrum of diseases. Further, these
novel approaches could pave the way for the development of
machine learning tools that provide disease prognosis or
predicting treatment response24 and even facilitate discovery
of clinically actionable, nondestructive computational
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pathology–based imaging diagnostic biomarkers for kidney
diseases.25,27,48

METHODS
Case and image dataset selection
This study was conducted using digital renal biopsies from the
NEPTUNE digital pathology repository. NEPTUNE is a North
American multicenter collaborative consortium with more than 650
adult and children enrolled from 29 recruiting sites (38 pathology
laboratories). Only cases with a diagnosis of MCD were included in
this study because histologically they are the most similar to normal
renal parenchyma. A total of 459 curated WSIs (125 H&E, 125 PAS,
102 SIL, 107 TRI) from 125 MCD renal biopsies were used.49 Not all
cases had all stains available in the digital pathology repository. Four
WSIs were selected for each patient (1 WSI per stain). From each
WSI, approximately 3 to 5 ROIs containing the histologic primitives
were randomly selected, inspected by a pathologist, and manually
extracted as 3000 � 3000 tiles then stored as 8-bit red-green-blue
(RGB) color images in PNG format at 40� digital magnification.
Additional details on digitization and curation of biopsy WSIs can be
found in Supplementary Figure S1.

Independent validation of the DL models. Six WSIs from 3
formalin-fixed and paraffin-embedded nephrectomy specimens were
included to test the DL network performance for the segmentation of
all histologic primitives on adult renal parenchyma without signifi-
cant structural abnormalities. Sections from the nephrectomy spec-
imens were stained with PAS, scanned into WSIs, and subsequently
stained with a CD34 antibody, a marker of endothelial cells, and then
rescanned into WSIs. One hundred seventy-five random ROIs
(3000 � 3000 pixels) were extracted from the PAS-stained WSIs. The
PAS-CD34 double-stained WSIs were used as ground truth for
validation of the DL segmentation approach for peritubular
capillaries.

Histologic primitives and manual segmentation
Five renal pathologists manually segmented the ROIs to establish the
ground truth for the histologic primitives (Table 2). Manual seg-
mentations were generated using an open-source software applica-
tion.15 The ground truth annotations were saved as binary masks;
that is, each pixel that was denoted as part of a histologic primitive
(positive class pixels expressed as binary 1s) or not (negative class
pixels expressed as binary 0s). Through this process, 30,048 anno-
tations were made by pathologists on 1818 ROIs (Figure 10).

Six histologic primitives were used for this study: glomerular tuft,
glomerular unit (tuft þ Bowman’s capsule), proximal tubular seg-
ments, distal tubular segments, arteries and arterioles, and peri-
tubular capillaries. Consistent and detailed ground truth labels across
all training samples can greatly facilitate robust DL performance,
especially in segmentation tasks.24,32,36,50–54 In order to produce
consistent annotations across all images, each histologic primitive
and its boundaries were carefully defined, and the annotation pro-
cedure for each use case standardized (Supplementary Figure S2).
Furthermore, each annotation generated by a pathologist was
reviewed by a second pathologist for quality assessment.

DL experimental pipeline and training methods
DL dataset. Up to four WSIs per biopsy (H&E, PAS, TRI, and

SIL for each) were used for the segmentation of the glomerular tuft
and unit, and proximal and distal tubular segments. Peritubular
capillaries were segmented using only PAS WSIs, and arteries/
Kidney International (2021) 99, 86–101



Figure 9 | Examples of false positive and false negative deep learning (DL) segmentations on periodic acid–Schiff (PAS). (a)
Glomerular unit: DL failed to detect a tangentially cut glomerular unit that does not have a typical round shape (red thick arrow). (b) Artery:
section artifact generate a false positive (red thick arrows). (c) Arteries: black arrows show 2 arterioles missed by the pathologist but detected
by DL. (d) Arteries: pathologists were instructed to segment artery when lumen was present; however, DL segmentation detected tangentially
cut artery (thick black arrow) where only the medium was visible. (e) Peritubular capillaries: a long peritubular capillary reveals only partial DL
segmentation at the pixel level. (f) Peritubular capillaries: DL network for peritubular capillaries detects a few glomerular capillaries (false
positive; thick red arrow). To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
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arterioles were segmented only in H&E, PAS, and TRI WSIs
(Table 2). WSIs were divided at the patient level into training, vali-
dation, and testing sets (ratio 6:1:3). The networks were developed
using WSIs of both adult and pediatric patients (Supplementary
Figure S1). For training of the U-Net network, 5 pathologists an-
notated 1196 glomerular tufts and units, 4669 proximal and 2285
distal tubular segments, 19,280 peritubular capillaries, and 2261
arteries/arterioles (Table 2).

Network configuration and training. Standard U-Net archi-
tecture with slightly tweaked parameters were implemented in
PyTorch framework for training of each use case (Figure 11). Details
of U-Net configuration, training methods including training set
balancing and data augmentation can be found in Supplemental S3.

Detection and segmentation metrics. Detection and seg-
mentation results were evaluated using F-Score, true positive rate
(TPR), positive predictive value (PPV), and DSC.55–57 Values of
0 and 1 represent the maximal discordance and agreement, respec-
tively, between the pathologist ground truth and the U-Net results.
Kidney International (2021) 99, 86–101
TPR, PPV, and F-Score measure the detection accuracy of the DL
networks. These metrics are computed using the number of correct
segmentation results (true positives), incorrect segmentations (false
positives), and missing segmentations (false negatives). DSC is the
pixel-wise spatial overlap index that measures the segmentation ac-
curacy of the classifier, with values ranging from 0 (indicating no
spatial overlap between ground truth annotation and corresponding
DL output mask) to 1 (indicating complete overlap), and a DSC
value >0.5 denoting a correct segmentation (true positive).

Number of training exemplars for different histologic
primitives
To test how the number of manually annotated training exemplars
influences network performance, we selected a representative set of
histologic primitives based on size, complexity, distribution, and
stain: glomerular tufts on H&E, peritubular capillaries on PAS, distal
tubular segments on TRI, and arteries/arterioles on SIL. Specifically,
we sought to evaluate the minimum number of annotated exemplars
97
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Figure 10 | Ground truth annotation for histologic primitives. Examples of manual annotation on histologic primitives on whole slide
images of formalin-fixed and paraffin-embedded sections from minimal change disease, stained with hematoxylin and eosin (H&E), periodic
acid–Schiff (PAS), trichrome (TRI), and silver (SIL), and corresponding binary masks (black and white pictures) are shown. To optimize viewing of
this image, please see the online version of this article at www.kidney-international.org.
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for standing up trained U-Net models for each type of histologic
primitive. Toward this end, multiple U-Net models were trained for
each type of primitive, each time with a greater number of annotated
exemplars. Detection and segmentation accuracy were then
computed for each such U-Net model for each primitive on the
corresponding testing sets (Figure 8).

DL segmentation performance across sites and artifacts
See Supplementary Figure S4.
APPENDIX
Members of the Nephrotic Syndrome Study Network (NEPTUNE)

NEPTUNE Enrolling Centers. Cleveland Clinic, Cleveland, OH: J. Sedor*,
K. Dell*, M. Schachere#, J. Negrey#

Children’s Hospital, Los Angeles, CA: K. Lemley*, E. Lim#
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Children’s Mercy Hospital, Kansas City, MO: T. Srivastava*, A. Garrett#

Cohen Children’s Hospital, New Hyde Park, NY: C. Sethna*, K. Laurent#

Columbia University, New York, NY: G. Appel*, M. Toledo#

Duke University, Durham, NC: L. Barisoni*
Emory University, Atlanta, GA: L. Greenbaum*, C. Wang**, C. Kang#

Harbor-University of California Los Angeles Medical Center: S. Adler*, C.
Nast*z, J. LaPage#

John H. Stroger Jr. Hospital of Cook County, Chicago, IL: A. Athavale*, M.
Itteera

Johns Hopkins Medicine, Baltimore, MD: A. Neu*, S. Boynton#

Mayo Clinic, Rochester, MN: F. Fervenza*, M. Hogan**, J. Lieske*, V.
Chernitskiy#

Montefiore Medical Center, Bronx, NY: F. Kaskel*, N. Kumar*, P. Flynn#

NIDDK Intramural, Bethesda, MD: J. Kopp*, J. Blake#

New York University Medical Center, New York, NY: H. Trachtman*, O.
Zhdanova**, F. Modersitzki#, S. Vento#

Stanford University, Stanford, CA: R. Lafayette*, K. Mehta#

Temple University, Philadelphia, PA: C. Gadegbeku*, D. Johnstone**, S.
Quinn-Boyle#
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Figure 11 | Flowchart of the workflow of deep learning (DL) experimental pipeline for each stain and use case. (a) Whole slide images
(WSIs) were selected for generation of training, validation, and testing data. (b) Regions of interest were cropped from original WSIs with 40�
digital magnification. (c) Ground truth labels were generated by pathologists for training, and overlapping patches of size 256 � 256 px (0.24
mm/px) containing both image data and ground truth annotation information were cropped from the training and validation images (as
shown in black boxes). (d) For each path, a randomized data augmentation method is introduced to account for (i) size variation of primitives,
(ii) stain variations, and (iii) tissue variations (e.g. thickness). (e) All the training patches were passed to U-Net on PyTorch for training, and
validation patches were used to generate loss and accuracy measures for each epoch trained to evaluate model performance. Finally, the
epoch that yielded the lowest loss on the validation data was selected for generation of test results. To optimize viewing of this image, please
see the online version of this article at www.kidney-international.org.

CP Jayapandian et al.: Deep learning of renal histologic primitives ba s i c re sea r ch
University Health Network Toronto: D. Cattran*, M. Hladunewich**, H.
Reich**, P. Ling#, M. Romano#

University of Miami, Miami, FL: A. Fornoni*, C. Bidot#

University of Michigan, Ann Arbor, MI: M. Kretzler*, D. Gipson*, A. Williams#,
J. LaVigne#

University of North Carolina, Chapel Hill, NC: V. Derebail*, K. Gibson*, A.
Froment#, S. Grubbs#

University of Pennsylvania, Philadelphia, PA: L. Holzman*, K. Meyers**, K.
Kallem#, J. Lalli#

University of Texas Southwestern, Dallas, TX: K. Sambandam*, Z. Wang#, M.
Rogers#

University of Washington, Seattle, WA: A. Jefferson*, S. Hingorani**, K.
Tuttle**x, M. Bray#, M. Kelton#, A. Cooper#x

Wake Forest University Baptist Health, Winston-Salem, NC: B. Freedman*,
J.J. Lin**

Data Analysis and Coordinating Center. M. Kretzler, L. Barisoni, C.
Gadegbeku, B. Gillespie, D. Gipson, L. Holzman, L. Mariani, M. Sampson, J.
Troost, J. Zee, E. Herreshoff, S. Li, C. Lienczewski, J. Liu, T. Mainieri, M.
Wladkowski, and A. Williams.

Digital Pathology Committee. Carmen Avila-Casado (UHN-Toronto),
Serena Bagnasco (Johns Hopkins), Joseph Gaut (Washington U), Stephen
Hewitt (National Cancer Institute), Jeff Hodgin (University of Michigan), Kevin
Lemley (Children’s Hospital LA), Laura Mariani (University of Michigan),
Matthew Palmer (U Pennsylvania), Avi Rosenberg (NIDDK), Virginie Royal
(Montreal), David Thomas (University of Miami), Jarcy Zee (Arbor Research). Co-
Chairs: Laura Barisoni (Duke University) and Cynthia Nast (Cedar Sinai).

*Principal investigator; **co-investigator; #study coordinator
zCedars-Sinai Medical Center, Los Angeles, CA
xProvidence Medical Research Center, Spokane, WA
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SUPPLEMENTARY MATERIAL
Supplementary File (PDF)
Figure S1. Digitization and curation of renal biopsy whole slide
images.
Figure S2. Histologic primitives and criteria for segmentation.
Figure S3. Network training, data augmentation, balanced sampling
and pre- and post-processing.
Figure S4. Deep learning segmentation performance across sites and
artifacts.
Figure S5. Glossary for explanation of technical terms.
Figure S6. Contributions compared to related deep learning work in
renal pathology.
Figure S7. Original hematoxylin and eosin (H&E), periodic acid–Schiff
(PAS), trichrome (TRI), and silver (SIL) whole slide images (WSIs).
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