Predicting tail-related risk measures: The consequences of using GARCH filters for non GARCH data

Détails

ID Serval
serval:BIB_6DB2B60BB504
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Predicting tail-related risk measures: The consequences of using GARCH filters for non GARCH data
Périodique
Journal of Empirical Finance
Auteur⸱e⸱s
Jalal A., Rockinger M.
ISSN
0927-5398
Statut éditorial
Publié
Date de publication
12/2008
Peer-reviewed
Oui
Volume
15
Numéro
5
Pages
868-877
Langue
anglais
Résumé
We investigate the consequences for Value-at-Risk and expected shortfall purposes of using a GARCH filter on various mis-specified processes. In general. we find that the McNeil and Frey (McNeil, A.J. and R. Frey, 2000, Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach, journal of Empirical Finance 7, 271-300.) two step procedure has very good forecasting properties. Using an unconditional non-filtered tail estimate also appears to perform satisfactorily for expected shortfall measurements but less so for VaR computations. Methods assuming specific densities such as the Gaussian or Student-t may yield wrong predictions. Thus, the use of an adequacy test for filtered data to given densities appears relevant. The paper builds on recent techniques to obtain thresholds for extreme value computations. Statistical tests for the expected shortfall, based on the circular bootstrap, are developed.
Mots-clé
Extreme value theory, Value-at-Risk (VaR), Expected shortfall, GARCH, Markov switching, Jump diffusion, Backtesting
Web of science
Création de la notice
09/05/2008 13:34
Dernière modification de la notice
20/08/2019 14:27
Données d'usage