Xenotransplantation: back to the future?
Détails
ID Serval
serval:BIB_571A0830C12B
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Xenotransplantation: back to the future?
Périodique
Transplant international
ISSN
1432-2277 (Electronic)
ISSN-L
0934-0874
Statut éditorial
Publié
Date de publication
05/2018
Peer-reviewed
Oui
Volume
31
Numéro
5
Pages
465-477
Langue
anglais
Notes
Publication types: Journal Article ; Review
Publication Status: ppublish
Publication Status: ppublish
Résumé
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Mots-clé
Animals, Animals, Genetically Modified, Gene Editing, Graft Rejection/etiology, Humans, Primates, Swine, Transplantation Chimera, Transplantation, Heterologous/adverse effects, CRISPR Cas/9, TALEN, blastocyst complementation, cell transplantation, genome editing technologies, interspecific organ generation, nonhuman primates, nucleases, safety, transplantation, xenotransplantation, xenozoonosis
Pubmed
Web of science
Création de la notice
07/12/2017 17:53
Dernière modification de la notice
02/11/2023 7:08