Region-based Satellite Image Classification: Method and Validation

Détails

Ressource 1Télécharger: BIB_552E48D7B010.P001.pdf (743.61 [Ko])
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_552E48D7B010
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Titre
Region-based Satellite Image Classification: Method and Validation
Titre de la conférence
ICIP 2005, 12th IEEE International Conference on Image Processing
Auteur⸱e⸱s
Gigandet X., Bach Cuadra M., Pointet A., Cammoun L., Caloz R., Thiran J.
Adresse
Genoa, Italy, September 11-14, 2005
ISBN
1522-4880
Statut éditorial
Publié
Date de publication
2005
Série
Proceedings of the International Conference on Image Processing
Pages
III-832-III835
Langue
anglais
Résumé
We propose an algorithm for very high-resolution
satellite image classification that combines
non-supervised segmentation with a supervised
classification. Both multi-spectral data and local
spatial priors are used in the Gaussian Hidden Markov
Random Field (GHMRF) model for the segmentation. Then,
two classifiers, Mahalanobis distance classifier and SVM,
are studied using intensity, texture and shape features.
Validation is done qualitatively and quantitatively by
comparison with a manual classification used as a ground
truth. Results show very good performance of our approach
in comparison to existing techniques. Also, we
demonstrate that spectral and spatial features calculated
on segmented regions are much more discriminant than the
spectral features of the pixels taken individually for
the classification task.
Mots-clé
bach, classification, Satellite imaging, segmentation
Création de la notice
29/11/2011 17:40
Dernière modification de la notice
20/08/2019 15:09
Données d'usage