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ABSTRACT

We propose an algorithm for very high-resolution satellite image
classification that combines non-supervised segmentation with a
supervised classification. Both multi-spectral data and local spa-
tial priors are used in the Gaussian Hidden Markov Random Field
(GHMRF) model for the segmentation. Then, two classifiers, Ma-
halanobis distance classifier and SVM, are studied using intensity,
texture and shape features. Validation is done qualitatively and
quantitatively by comparison with a manual classification used as
a ground truth. Results show very good performance of our ap-
proach in comparison to existing techniques. Also, we demon-
strate that spectral and spatial features calculated on segmented
regions are much more discriminant than the spectral features of
the pixels taken individually for the classification task.

1. INTRODUCTION

The extraction of information on the land cover from remote sens-
ing data has for long been driven by the use of the spectral dimen-
sion of the image alone. This approach, based on the considera-
tion of the spectral distance and the decision criterion, proved to
be satisfactory for the classification of medium and high resolution
images (> 10 m resolution). Given the strong heterogeneity of the
spectral information induced by the current very high resolution
images (up to 0.5 m resolution), the pixel by pixel approaches of
image classification are no more satisfactory.

Solutions are brought by the contextual approaches, consider-
ing the pixel neighborhood. The segmentation acts as an homoge-
nization factor, strengthen the discriminating ability of the classifi-
cation. Moreover, spatial features are calculated for each homoge-
neous region, supplementing the spectral features to be considered
by the classifier.

Apart from rare cases, remote sensing dedicated studies start
to introduce contextual methods for the thematic classification of
images. Despite the advanced research status and the wide use
of the contextual approaches in other image treatment domains
(such as medical imaging [1]), the remote sensing domain remains
less explored. Some early studies by [2] where followed by sev-
eral contributions to segmentation of remote sensing data using
clustering, region growing and edge detection methods [3]. Re-
cently, Markov Random Fields (MRF) have an increasing interest
in remote sensing [4, 5] since they are very well suited to model
stochastic interactions among pixels. Computational solutions for

0-7803-9134-9/05/$20.00 ©2005 IEEE

the treatment of remote sensing data remains rare and far to pro-
vide the user with accurate and relevant classification results [6, 7].

A method for satellite image analysis combining several well-
known algorithms is presented in this paper. First, both multi spec-
tral data and contextual information are used in the Gaussian Hid-
den Markov Random Field (GHMRF) model for segmenting the
image into homogeneous regions. Then, features such as mean in-
tensity, texture or shape are extracted from the segmented areas in
order to attribute a label to each region, using either a Mahalanobis
distance or a Support Vector Machine classification. The first goal
of this paper is to study the sensitivity of classification step to the
prior segmentation. The second aim is to show the advantage of
using region-based features from segmented images versus pixel-
based features for high-resolution image classification.

The text is organized as follows. First, a brief description of
the methods is done. Then, results and validation are presented
followed by the discussion and conclusion.

2. METHODS

2.1. Segmentation

A Gaussian Hidden Markov Random Field (GHMRF) model is
used for segmentation. Because of limited space, a summary of
the main concepts is done, the reader is refered to [8, 9] for further
details.

Intensity model. Let us suppose that the image intensity (each
spectral band) has a density function p(x|®) that is governed by
the set of parameters ® in a way that:

M

p(x|©) =D (cp(x]6r)), (1

k=1

where M is the number of components, ® = (a1, ..., anr, 01, ..., Oar)

are such that ) 2/1:1 ar = 1 and each py, is a probability density
function characterized by 6'. Let X = {x1,...,xn} be a set of
data drawn from this distribution. Let us suppose that there is a
set of data Y = {y;}}_, whose values indicates which probabil-
ity density function p; generated each x;, where y; € 1,...,. M
for each ¢, and y; = k if the sample 7 is generated by the distri-
bution k. If Gaussian distribution is considered, we note @9 =

'In the particular case of using Gaussian distributions, this is the well-
known Finite Gaussian Mixture Model (FGMM).
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(af,...,a%;,07,...,0%,), and pi(x;|07). The mixing parameters
ay, are the prior probabilities of each mixture component. By us-
ing Bayes rule, we can compute a posteriori probability:

ay,py; (xil0y,) oy py, (xil0F,)
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Spatial distribution model. The Hidden Markov Random Field
(HMREF) theory asserts that the total image information can be re-
duced to a local information according to a neighborhood system.
The local spatial information is taken into account by the GHMRF
approach as prior probability, replacing ax in Eq. 2 by

eﬁViJJi
pilyn:) = a5 (3)

D k=1

yn, is the neighborhood around i, (8 direct neighbors are consid-
ered [5]), V; i is called energy function, and 3 is a constant which
represents the importance of the spatial prior. (3 is chosen experi-
mentally, knowing that a small value will provide noisy segmenta-
tions, while a large one could damage the geometry of the objects.
Usually, optimum value is in between 0.5 and 1.5.

Initial settings and implementation. The number of classes is
usually fixed by the user. However, a normalized entropy crite-
rion (NEC) [8] is useful in this choice. Each class is modelled
by a Gaussian distribution whose initial parameters, 9, are ob-
tained using a k-means algorithm. Initial segmentation is obtained
through a thresholding of the image histogram® (step 1.1 in Ta-
ble 1). GHMRF implementation follows an iterative scheme that
solves the estimation parameter problem in an adapted version of
the EM algorithm as suggested in [10]. The algorithm stops when
the relative difference between estimated means is less than 0.1%.
Segmentation is done by maximizing the a posteriori probability
(MAP):

g i + (Xi 09,
p(yilxi, ©7) = ﬁ{(y |lyn: )Py, (i yl)g _ @
k=1 P(Wilyn;)pr (x:]07)

2.2. Classification

Classification is done in three steps: feature extraction, feature se-
lection and labelling (step 2 in Table 1). They are briefly described
in what follows.

Feature selection. Several features are extracted from the seg-
mented areas: the mean and standard deviation for each channel,
the red-infrared and red-green ratios, the area, perimeter and com-
pactness. Feature selection is a critical step to ensure the best re-
sults. One way is to let the expert selecting the features. How-
ever, we suggest two approaches that could help in this choice, the
cross-validation [11] and the sequential generation [12].

Mahalanobis distance classifier. This is a minimal distance clas-
sifier that tries to minimize, in the principal component space, the
distance between each testing instance and the center of its class.
Each class, defined by a set of training samples, is assumed to fol-
low a Gaussian distribution.

2A FGMM is used to fit the image histogram. Then, initial segmenta-
tion is obtained by thresholding.

Classification process
1 Segmentation step
1.1 Initialization: k-means, FGMM
1.2 GHMRF
2 Classification step
2.1 Region-based Feature Extraction
2.2 Feature selection
2.3 Mahalanobis or SVM

Table 1. Segmentation and classification steps.

Training set
Classifier 1 2 3 4
Mahalanobis | 79.4 | 84.3 | 80.2 | 74.3
SVM 81.5 | 86.2 | 86.3 | 81.5
5 6 7 8
Mahalanobis | 85.7 | 79.3 | 81.7 | 85.3
SVM 86.6 | 83.3 | 83.5 | 80.8

Table 2. Classification process: overall accuracy [%]

Support Vector Machine (SVM). The SVM classifier is widely
used in supervised classification. Its goal is to transform input data
into a higher-dimensional space where classes can be better sep-
arated. Here, radial basis functions are used as kernel functions
and the kernel parameters are experimentally chosen. We refer the
reader to [8, 13] for further details.

3. RESULTS

The segmentation and classification methods presented above have
been extensively tested an validated on different data sets [8]. Here
only the most significant results will be presented.

3.1. Results

Original image is from the Quickbird satellite (blue, green, red and
infrared channels are used, image size is 401x401 pixels with 2.4m
resolution) showing mostly rural areas. Fig. 1(a) shows a manual
segmentation that will be considered as a ground truth classifica-
tion image. Six classes have been selected by the expert: wood,
farm 1, farm 2, open land, scarce vegetation and roads.

First, qualitative assessment of the results of our classifica-
tion approach is done by visual inspection (see Fig. 1(b) and (c)).
Results are very satisfactory since few regions are lost comparing
to the reference. The three main factors of error are due to the
initial segmentation errors, the noise and the shadows. Then, in
Table 2, quantitative validation is shown by the overall accuracy
(percentage of pixels correctly classified) using 8 different train-
ing sets manually selecterd (that cover from 22% to 50% of the
whole image size). Globally, SVM provides slightly better results
than Mahalanobis and both are robust among different training
sets. Performance for each class is shown by the Dice Similarity
Measure (DSM) in Table 3. DSM is an index of relative similar-

ity, defined as DSMg , = If,N_‘;_?\}’b, sensitive to both differences
? a

in size and location®. Results are shown for the Mahalanobis dis-

3 N, is the number of pixels that method z classifies as class c. Nynp
is the number of pixels that both methods a and b classify as c.
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(d) E-cognition (66.8%)

(c) SVM classifier (86.2%)

Fig. 1. Reference and classified images (overall accuracy)

DSM [%]
1 2 3 4 5 6
68.1 | 85.6 | 86.9 | 92.1 | 70.2 | 53.6

Table 3. Dice Similarity Measure (DSM), Mahalanobis distance
classification. Wood, farm 1, farm 2, open land, scarce vegetation
and roads

tance classifier using the training set 2 (overall accuracy of 84.3%).
DSM shows that wood, roads and scarce vegetation are the classes
with lowest rate accuracy (53, 68, and 70% respectively) mainly
because they are not widely represented in the test image.

As far as we know, only the E-cognition software [14] per-
forms a previous segmentation (using watershed algorithm) step
for classification. Comparing with our approach, its resulting clas-
sification (see Fig.1(d)) is much more noisy and the overall accu-
racy is significantly lower (66.8%). If only the classification step
is considered (E-cognition segmented image is used as input of our
Mabhalanobis classifier), an accuracy higher than 75% is obtained.
The main limitations of their approach are the following. First, a
single threshold parameter can be used in the watershed approach
to tune the homogeneity of the segmentation. This threshold pa-
rameter acts simultaneously on both spectral and spatial dimen-
sions. Therefore all the segments will have a similar size while
this does not reflect the territory reality (having both small and
large objects). Actually, GHMREF has better performance than wa-
tershed approach, as proven in [8]. Second, no automatic and class
specific method is provided for the selection of features. There-
fore, a common use is to integrate all the features in the classifi-
cation and this may interfere with an optimal classification due to
the use of non-discriminant features.

4. DISCUSSION

4.1. Sensitivity of the classifier to prior segmentation

Since feature extraction is done on the segmented regions, the se-
lection of the number of classes, K, becomes a critical choice. If
few classes are used, image geometry is not respected. On the
other hand, if K is too large, regions are over-segmented and the
extracted features are not significant. We then have to find the
best compromise between segmentation and classification. Our
aim is to determine which segmentation gives the best classifi-
cation. Accuracy using different initial segmentations is shown

Percentage of overall accuracy

525 501 799

817
e gy qry 801 %

7 60

= 30

4 5 6 7 8 9 10 " 12 13

Number of classes for segmentation

Fig. 2. Influence of the prior segmentation

(for Mahalanobis classifier) in Fig. 2. Note that the initial seg-
mentations have slightly different training regions. Few number
of classes, K = {2, 3}, do not allow to perform a classification
since no relevant training regions can be selected. From K = 4
to K = 10 the accuracy progressively increases, mainly because
of the improvement of the segmentations. Between K = 9 to
K = 11, the best classification results are obtained. Then, per-
formance slightly decreases from K = 12. This is not surprising
because at this point images are over-segmented. Obviously, se-
lecting an optimum number of components is not straightforward.
However, maximum accuracy is clearly obtained between K = 9
and K = 11. Thus, a range of optimum values can be first deter-
mined visually by expert criteria and, finally, the optimum can be
automatically chosen using the NEC criterion.

4.2. Pixel-based vs. region-based classification

The aim of this section is twofold: first, to compare pixel-based
classification vs our region-based classification and second, to com-
pare the effectiveness of different features. The Mahalanobis clas-
sifier is used in this section because of its best compromise be-
tween performance and computing time. In pixel-based classi-
fication texture is computed as the standard deviation of the in-
tensity for each band in a 3 by 3 neighborhood. All the results
are reported in Table 4. It is clearly shown that region-based seg-
mentation performs around 8% better in terms of accuracy. More-
over, region-based classification is much less noisy thanks to the
HMRF model that create homogenous areas. Finally, training is
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Overall accuracy [%]
Features Pixel-based | Region-based
Intensity 72.5 80.0
Int.+Tex. 77.9 84.2
Int.+Shape - 82.5
Int.+Tex.+Shape - 84.3

Table 4. Pixel-based vs. region-based classification

much easier when using region-based classification, since select-
ing regions is nicer than manually drawing areas to train the clas-
sifier. Texture features improve the results of more than 4%, in
both pixel and region-based classifiers. Despite the improvement
of the overall accuracy we do not suggest to use texture features in
pixel-based classification because of the border effect. On the con-
trary, the use of texture is strongly advised for region-based clas-
sification. Shape features increase around a 2% the classification
using only intensity information. However, differences between
intensity-texture and intensity-texture-shape classification are not
significant. Shape features do not seem to be useful in this case
but we though suggest to extract shape features, even if the results
are not improved in some cases, since they are naturally useful for
some classes such as roads or high-ways.

4.3. Limitations and future work

As seen in the qualitative validation, poor prior segmentation, shad-
ows and noise are the main factors classification errors. The influ-
ence of the prior segmentation quality has already been discussed
in Sec. 4.1. Shadows and noise (such as speckle) are not still con-
sidered in our image model. Special attention should be done to
these artifacts. Shadows are particularly difficult to deal with. In
some cases, even if they can be detected is not easy to determine
which is the underlying class. This is currently solved by arbitrar-
ily splitting the shadowed area into the neighboring classes.

In a near future, a multi-level classification approach will be
considered. As it is known, classes do not have the same spectral
and geometrical characteristics. For instance, compactness is rel-
evant for urban areas, since these regions are very elongated. On
the contrary, farming areas do not present singularities in shape
features. So, this new approach could discriminate at each level
one class from the remaining ones, and the regions belonging to
this class would be excluded in the next level. Then, the same
principle would be applied to the other regions, until all the classes
would have been assigned. Only relevant features would be used
at each level, so that each class would be constructed with its best
features.

5. CONCLUSION

We presented an algorithm for high-resolution satellite image clas-
sification that combines non-supervised segmentation with two dif-
ferent approaches for supervised classification. Segmentation uses
both multi spectral data and contextual information. Then, features
such as mean intensity, texture or shape are extracted to attribute
a label to each region, using either a Mahalanobis distance or a
Support Vector Machine classification. Results are very satisfac-
tory: high accuracy rates have been obtained and the advantage
of using a prior segmentation for feature extraction and training
have been shown. Also, our approach has demonstrated its higher
performance compared to softwares currently used. Finally, the

feature selection problem has been discussed for intensity, texture
and shape features.
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