Biomechanical forces promote embryonic haematopoiesis.

Détails

ID Serval
serval:BIB_540DECA3BE02
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Biomechanical forces promote embryonic haematopoiesis.
Périodique
Nature
Auteur⸱e⸱s
Adamo L., Naveiras O., Wenzel P.L., McKinney-Freeman S., Mack P.J., Gracia-Sancho J., Suchy-Dicey A., Yoshimoto M., Lensch M.W., Yoder M.C., García-Cardeña G., Daley G.Q.
ISSN
1476-4687 (Electronic)
ISSN-L
0028-0836
Statut éditorial
Publié
Date de publication
25/06/2009
Peer-reviewed
Oui
Volume
459
Numéro
7250
Pages
1131-1135
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.
Mots-clé
Animals, Aorta/cytology, Aorta/embryology, Cell Differentiation, Cell Line, Cells, Cultured, Core Binding Factor Alpha 2 Subunit/genetics, Embryonic Stem Cells, Endothelium-Dependent Relaxing Factors/pharmacology, Female, Gene Expression Regulation, Developmental, Hematopoiesis/physiology, Hematopoietic Stem Cells/cytology, Hematopoietic Stem Cells/drug effects, Mice, Nitric Oxide/pharmacology, Pregnancy, Stress, Mechanical
Pubmed
Web of science
Création de la notice
11/10/2022 0:04
Dernière modification de la notice
11/10/2022 6:39
Données d'usage