First Steps Towards a Risk of Bias Corpus of Randomized Controlled Trials

Détails

Ressource 1Télécharger: 37203753.pdf (245.73 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
ID Serval
serval:BIB_4E63D97F7A1D
Type
Partie de livre
Sous-type
Chapitre: chapitre ou section
Collection
Publications
Institution
Titre
First Steps Towards a Risk of Bias Corpus of Randomized Controlled Trials
Titre du livre
Caring is Sharing – Exploiting the Value in Data for Health and Innovation
Auteur⸱e⸱s
Dhrangadhariya Anjani, Hilfiker Roger, Sattelmayer Martin, Giacomino Katia, Caliesch Rahel, Elsig Simone, Naderi Nona, Müller Henning
Editeur
IOS Press
ISBN
9781643683881
9781643683898
ISSN
0926-9630
1879-8365
ISSN-L
0926-9630
Statut éditorial
Publié
Date de publication
18/05/2023
Peer-reviewed
Oui
Volume
302
Série
Studies in Health Technology and Informatics
Pages
586-590.
Langue
anglais
Résumé
Risk of bias (RoB) assessment of randomized clinical trials (RCTs) is vital to conducting systematic reviews. Manual RoB assessment for hundreds of RCTs is a cognitively demanding, lengthy process and is prone to subjective judgment. Supervised machine learning (ML) can help to accelerate this process but requires a hand-labelled corpus. There are currently no RoB annotation guidelines for randomized clinical trials or annotated corpora. In this pilot project, we test the practicality of directly using the revised Cochrane RoB 2.0 guidelines for developing an RoB annotated corpus using a novel multi-level annotation scheme. We report inter-annotator agreement among four annotators who used Cochrane RoB 2.0 guidelines. The agreement ranges between 0% for some bias classes and 76% for others. Finally, we discuss the shortcomings of this direct translation of annotation guidelines and scheme and suggest approaches to improve them to obtain an RoB annotated corpus suitable for ML.
Pubmed
Web of science
Open Access
Oui
Création de la notice
24/05/2023 8:12
Dernière modification de la notice
05/09/2024 9:00
Données d'usage