Impact of tamoxifen dose on tamoxifen and its active metabolites exposure in breast cancer patients: preliminary results from a prospective, open-label trial
Détails
ID Serval
serval:BIB_4BDA40F2AC01
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Poster: résume de manière illustrée et sur une page unique les résultats d'un projet de recherche. Les résumés de poster doivent être entrés sous "Abstract" et non "Poster".
Collection
Publications
Institution
Titre
Impact of tamoxifen dose on tamoxifen and its active metabolites exposure in breast cancer patients: preliminary results from a prospective, open-label trial
Titre de la conférence
80. Jahrestagung der Schweizerischen Gesellschaft für Allgemeine Innere Medizin
Adresse
Basel, Schweiz, 23-25. Mai 2012
ISBN
1424-4985
ISSN-L
1424-4977
Statut éditorial
Publié
Date de publication
2012
Volume
19
Série
Swiss Medical Forum = Forum Médical Suisse
Pages
108S
Langue
anglais
Résumé
Background: CYP2D6 is the key enzyme responsible for tamoxifen bioactivation mainly into endoxifen. This gene is highly polymorphic and breast cancer patients classified as CYP2D6 poor metabolizers (PM) or intermediate metabolizers (IM) appear to show low concentrations of endoxifen and to achieve less benefit from tamoxifen treatment.
Purpose: This prospective, open-label trial aimed to assess how the increase of tamoxifen dose influences the level of endoxifen in the different genotype groups (poor-, intermediate-, and extensive-metabolizers (EM)). We examined the impact of doubling tamoxifen dose to 20mg twice daily on endoxifen plasma concentrations across these genotype groups.
Patients and methods: Patients were assayed for CYP2D6 genotype and phenotype using dextromethorphan test. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma levels were determined on 2 occasions at baseline (20mg/day of tamoxifen) and at day 30, 90 and 120 after dose increase (20 mg twice daily) using liquid chromatography-tandem-mass spectrometry. Endoxifen plasma levels were measured 6 to 24 hours after last drug intake to evaluate its accumulation before and after doubling tamoxifen dosage. ANOVA was used to evaluate endoxifen levels increase and difference between genotype groups.
Results: 63 patients are available for analysis to date. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma reached steady state at 30 day after tamoxifen dose escalation, with a significant increase compared to baseline by 1.6 to 1.8 fold : geometric mean plasma concentrations (CV %) were 140 ng/mL (45%) at baseline vs 255 (47%) at day 30 for tamoxifen (P < 0.0001); 256 (49%) vs 408 (64%) for N-desmethyltamoxifen (P < 0.0001); 2.4 (46%) vs 3.9 (51%) for 4-OH-tamoxifen (P < 0.0001); and 20 (91%) vs 33 (91%) for endoxifen (P < 0.02). On baseline, endoxifen levels tended to be lower in PM: 7 ng/mL (36%), than IM: 16 ng/mL (70%), P=0.08, and EM: 24 ng/mL (71%), P<0.001. After doubling tamoxifen dosage, endoxifen concentrations rose similarly in PM, IM and EM with respectively, 1.5 (18%), 1.5 (28%) and 1.7 (30%) fold increase from baseline, P=0.18.
Conclusion: Endoxifen exposure varies widely under standard tamoxifen dosage, with CYP2D6 genotype explaining only a minor part of this variability. It increases consistently on doubling tamoxifen dose, similarly across genotypes. This would enable exposure optimization based on concentration monitoring.
Purpose: This prospective, open-label trial aimed to assess how the increase of tamoxifen dose influences the level of endoxifen in the different genotype groups (poor-, intermediate-, and extensive-metabolizers (EM)). We examined the impact of doubling tamoxifen dose to 20mg twice daily on endoxifen plasma concentrations across these genotype groups.
Patients and methods: Patients were assayed for CYP2D6 genotype and phenotype using dextromethorphan test. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma levels were determined on 2 occasions at baseline (20mg/day of tamoxifen) and at day 30, 90 and 120 after dose increase (20 mg twice daily) using liquid chromatography-tandem-mass spectrometry. Endoxifen plasma levels were measured 6 to 24 hours after last drug intake to evaluate its accumulation before and after doubling tamoxifen dosage. ANOVA was used to evaluate endoxifen levels increase and difference between genotype groups.
Results: 63 patients are available for analysis to date. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma reached steady state at 30 day after tamoxifen dose escalation, with a significant increase compared to baseline by 1.6 to 1.8 fold : geometric mean plasma concentrations (CV %) were 140 ng/mL (45%) at baseline vs 255 (47%) at day 30 for tamoxifen (P < 0.0001); 256 (49%) vs 408 (64%) for N-desmethyltamoxifen (P < 0.0001); 2.4 (46%) vs 3.9 (51%) for 4-OH-tamoxifen (P < 0.0001); and 20 (91%) vs 33 (91%) for endoxifen (P < 0.02). On baseline, endoxifen levels tended to be lower in PM: 7 ng/mL (36%), than IM: 16 ng/mL (70%), P=0.08, and EM: 24 ng/mL (71%), P<0.001. After doubling tamoxifen dosage, endoxifen concentrations rose similarly in PM, IM and EM with respectively, 1.5 (18%), 1.5 (28%) and 1.7 (30%) fold increase from baseline, P=0.18.
Conclusion: Endoxifen exposure varies widely under standard tamoxifen dosage, with CYP2D6 genotype explaining only a minor part of this variability. It increases consistently on doubling tamoxifen dose, similarly across genotypes. This would enable exposure optimization based on concentration monitoring.
Site de l'éditeur
Création de la notice
17/02/2014 12:08
Dernière modification de la notice
20/08/2019 14:00