Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity.
Détails
Télécharger: zanou nat comm.pdf (3767.65 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_4B4985CA147A
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity.
Périodique
Nature communications
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Statut éditorial
Publié
Date de publication
10/12/2021
Peer-reviewed
Oui
Volume
12
Numéro
1
Pages
7219
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Publication Status: epublish
Résumé
Sustained ryanodine receptor (RyR) Ca <sup>2+</sup> leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca <sup>2+</sup> content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca <sup>2+</sup> uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca <sup>2+</sup> leak or preventing mitochondrial Ca <sup>2+</sup> uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca <sup>2+</sup> leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.
Mots-clé
Animals, Calcium/metabolism, Calcium Signaling, Cell Line, Endoplasmic Reticulum/metabolism, Energy Metabolism, Female, Humans, Male, Mice, Mice, Inbred C57BL, Mitochondria/metabolism, Muscle Weakness, NAD/metabolism, Proteomics, Ryanodine Receptor Calcium Release Channel/genetics, Ryanodine Receptor Calcium Release Channel/metabolism, Sarcoplasmic Reticulum/metabolism, Tacrolimus Binding Proteins
Pubmed
Web of science
Open Access
Oui
Création de la notice
20/12/2021 13:24
Dernière modification de la notice
23/12/2023 7:05