Condition-specific series of metabolic sub-networks and its application for gene set enrichment analysis.
Détails
Télécharger: Bioinformatics35p2258.pdf (3305.06 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
Document(s) secondaire(s)
Télécharger: Supplementary_Data.docx (2603.90 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_FigS1.pdf (7.54 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_FigS2.pdf (1523.59 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_FigS3.pdf (24.11 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_FigS4.pdf (920.19 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_FigS5.pdf (1118.86 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_TableS1.xlsx (10.80 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
Télécharger: Supplementary_TableS2.xlsx (18.35 [Ko])
Etat: Public
Version: Final published version
Licence: Non spécifiée
Etat: Public
Version: Final published version
Licence: Non spécifiée
ID Serval
serval:BIB_3E96F1A1B541
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Condition-specific series of metabolic sub-networks and its application for gene set enrichment analysis.
Périodique
Bioinformatics
ISSN
1367-4811 (Electronic)
ISSN-L
1367-4803
Statut éditorial
Publié
Date de publication
01/07/2019
Peer-reviewed
Oui
Volume
35
Numéro
13
Pages
2258-2266
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Résumé
Genome-scale metabolic networks and transcriptomic data represent complementary sources of knowledge about an organism's metabolism, yet their integration to achieve biological insight remains challenging.
We investigate here condition-specific series of metabolic sub-networks constructed by successively removing genes from a comprehensive network. The optimal order of gene removal is deduced from transcriptomic data. The sub-networks are evaluated via a fitness function, which estimates their degree of alteration. We then consider how a gene set, i.e. a group of genes contributing to a common biological function, is depleted in different series of sub-networks to detect the difference between experimental conditions. The method, named metaboGSE, is validated on public data for Yarrowia lipolytica and mouse. It is shown to produce GO terms of higher specificity compared to popular gene set enrichment methods like GSEA or topGO.
The metaboGSE R package is available at https://CRAN.R-project.org/package=metaboGSE.
Supplementary data are available at Bioinformatics online.
We investigate here condition-specific series of metabolic sub-networks constructed by successively removing genes from a comprehensive network. The optimal order of gene removal is deduced from transcriptomic data. The sub-networks are evaluated via a fitness function, which estimates their degree of alteration. We then consider how a gene set, i.e. a group of genes contributing to a common biological function, is depleted in different series of sub-networks to detect the difference between experimental conditions. The method, named metaboGSE, is validated on public data for Yarrowia lipolytica and mouse. It is shown to produce GO terms of higher specificity compared to popular gene set enrichment methods like GSEA or topGO.
The metaboGSE R package is available at https://CRAN.R-project.org/package=metaboGSE.
Supplementary data are available at Bioinformatics online.
Mots-clé
Animals, Genome, Metabolic Networks and Pathways, Mice, Probability, Software, Transcriptome
Pubmed
Web of science
Open Access
Oui
Financement(s)
Fonds national suisse / CRSII3_141848
Création de la notice
01/07/2019 9:16
Dernière modification de la notice
21/11/2022 8:29