The use of deep learning models to predict progression-free survival in patients with neuroendocrine tumors.

Détails

Ressource 1Télécharger: 37497644.pdf (3190.63 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC-ND 4.0
ID Serval
serval:BIB_3CD8782DE418
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
The use of deep learning models to predict progression-free survival in patients with neuroendocrine tumors.
Périodique
Future oncology
Auteur⸱e⸱s
Pavel M., Dromain C., Ronot M., Schaefer N., Mandair D., Gueguen D., Elvira D., Jégou S., Balazard F., Dehaene O., Schutte K.
ISSN
1744-8301 (Electronic)
ISSN-L
1479-6694
Statut éditorial
Publié
Date de publication
10/2023
Peer-reviewed
Oui
Volume
19
Numéro
32
Pages
2185-2199
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Aim: The RAISE project assessed whether deep learning could improve early progression-free survival (PFS) prediction in patients with neuroendocrine tumors. Patients & methods: Deep learning models extracted features from CT scans from patients in CLARINET (NCT00353496) (n = 138/204). A Cox model assessed PFS prediction when combining deep learning with the sum of longest diameter ratio (SLDr) and logarithmically transformed CgA concentration (logCgA), versus SLDr and logCgA alone. Results: Deep learning models extracted features other than lesion shape to predict PFS at week 72. No increase in performance was achieved with deep learning versus SLDr and logCgA models alone. Conclusion: Deep learning models extracted relevant features to predict PFS, but did not improve early prediction based on SLDr and logCgA.
Mots-clé
Humans, Progression-Free Survival, Neuroendocrine Tumors/diagnosis, Neuroendocrine Tumors/therapy, Deep Learning, Proportional Hazards Models, Tomography, X-Ray Computed, RECIST, artificial intelligence, deep learning, neuroendocrine tumors, progression-free survival
Pubmed
Web of science
Open Access
Oui
Création de la notice
28/07/2023 15:57
Dernière modification de la notice
10/02/2024 7:20
Données d'usage