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Aim: The RAISE project assessed whether deep learning could improve early progression-free survival
(PFS) prediction in patients with neuroendocrine tumors. Patients & methods: Deep learning models
extracted features from CT scans from patients in CLARINET (NCT00353496) (n = 138/204). A Cox model
assessed PFS prediction when combining deep learning with the sum of longest diameter ratio (SLDr) and
logarithmically transformed CgA concentration (logCgA), versus SLDr and logCgA alone. Results: Deep
learning models extracted features other than lesion shape to predict PFS at week 72. No increase in
performance was achieved with deep learning versus SLDr and logCgA models alone. Conclusion: Deep
learning models extracted relevant features to predict PFS, but did not improve early prediction based on
SLDr and logCgA.

Plain language summary – The use of deep learning models to predict progression-free survival in patients
with neuroendocrine tumors: Neuroendocrine tumors (NET) are slow-growing cancers. How well cancers
respond to treatment is usually measured using ‘Response Evaluation Criteria in Solid Tumors (RECIST)’,
which is based on measuring the size of tumors. RECIST is not well suited for assessing NETs as these tumors
often grow slowly and rarely shrink significantly, so it is difficult to tell whether a treatment has any effect.
A better way of measuring how well NETs are responding to treatment is needed, to ensure that patients
receive the right treatment as early as possible.

The RAISE project aimed to use a type of artificial intelligence (AI) called ‘deep learning’ to examine
images of NETs, taken from patients in a clinical trial of treatment with lanreotide, to help predict how
they might respond to treatment. These images were analyzed by the deep learning AI to see if there are
any features of tumors, other than shape or size, that may help to predict response to treatment.

The project showed that this technology can detect features in images of NETs, other than the shape
and size of tumors, that are useful for predicting how well a treatment might work for an individual
patient. However, this technology could not improve prediction of how well a treatment would work at
an earlier stage compared with other currently used indicators.

Overall, further research and work is needed to improve this technology. However, these results show
that deep learning may have the potential to improve prediction of treatment response in patients with
NETs.
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Neuroendocrine tumors (NET), a subset of neuroendocrine neoplasms, are rare. However, incidences of NETs
appear to be rising, partly due to improvements in diagnosis through increased use of endoscopic and imaging
procedures in clinical practice, and increased awareness [1]. Appropriate diagnosis and management of NETs
demands a multidisciplinary approach using pathological, biochemical, radiologic and nuclear and surgical clinical
methods [2–4].

Ki-67 is considered a key prognostic factor in gastroenteropancreatic NETs and is a major component for their
classification [5,6], with there being a positive correlation between Ki-67 and disease stage [5,7]. However, Ki-67
assessment still suffers from intra- and inter-observer variability, especially for differentiating Grade 1 NETs from
Grade 2 [8]. Ki-67 has also been reported to vary during the course of the disease and between primary and
metastatic sites [9,10]. Therefore, its value in predicting NET grades and associated progression may be limited.
Biochemical markers for NETs also include elevated chromogranin A (CgA) levels; decreases in this biomarker
have been associated with longer progression-free survival (PFS) in patients receiving somatostatin analogs (SSA)
or other targeted therapies [11,12]. However, CgA is limited as a marker of NETs due to its non-specificity [13].

Advances in imaging techniques over the past 15 years have considerably improved effective diagnosis and
clinical management of NETs [14,15]. Radiologic methods for NET assessment include conventional, cross-sectional
imaging to determine physical tissue characteristics. Functional imaging of somatostatin receptor expression with
68Ga-SSA PET/CT plays a key role in diagnosis, staging and treatment selection in NETs [15].

Imaging is also key to assessing tumor response, and Response Evaluation Criteria in Solid Tumors (RECIST)
represents an established method to assess tumor response to systemic therapies in NETs. RECIST uses the sum
of the longest diameter (SLD) of lesions to estimate the change in tumor burden in patients over a course of
treatment [16–18]. The SLD, together with the appearance of new lesions, is used to compute a categorical variable
(complete response, partial response, stable disease, or progressive disease) to define PFS, which is often used as a
primary end point in clinical trials in patients with NETs [16,17].

However, in patients with NETs, tumor response to therapies is often reflected by disease stabilization rather than
significant tumor shrinkage [19]; therefore, classifying a successful treatment response in terms of tumor shrinkage,
according to RECIST, may be an oversimplification [20]. In NETs, which are slow-growing, an earlier indication of
treatment benefit than is provided by PFS and RECIST would aid the assessment of therapies and may improve
outcomes for patients.

CLARINET (NCT00353496) was a pivotal, phase III, placebo-controlled trial, designed using response as-
sessment with RECIST criteria, that evaluated the efficacy and safety of the SSA lanreotide for tumor control in
patients with enteropancreatic NETs [21]. Post-hoc analyses of data from CLARINET revealed the prognostic value
of tumor growth rate (TGR) in patients with NETs; further validation of TGR as a potential marker of progression
is ongoing [20].

Other clinical and imaging features that do not rely on tumor size for estimating treatment response have been
identified using CT texture analysis and may hold value in identifying patients with NETs who are at risk of early
disease progression [22]. Utilizing complex data to demonstrate the value of precision and personalized medicine will
rely on emerging advances in deep learning concepts and artificial intelligence [23]. These techniques may aid in the
identification and segmentation of tumors, thereby improving diagnoses [24]. Convolutional neural networks are
the most commonly applied deep learning algorithms, and are capable of modelling complex relationships within
imaging data to provide quantitative assessments of radiologic characteristics [25]. One major limitation of deep
learning algorithms is the high number of observations required for training [23], which recently has been over-
come using either generative adversarial networks to generate synthetic images from magnetic resonance imaging
(MRI) [26], or transfer learning techniques [27]. The value of deep learning models in improving the accuracy of
tumor grading in NETs has been demonstrated [8,26,28], but their potential in the prediction of treatment response
in patients with NETs is yet to be explored.

The Research for Artificial Intelligence-Based Surrogate Endpoint (RAISE) project aimed to leverage the potential
of machine learning to create a multimodal surrogate end point for RECIST based on biochemical data and imaging
biomarkers, allowing earlier prediction of treatment efficacy and PFS.
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12 patients were excluded from this analysis

All patients in CLARlNET

Exploitable 2D lesion annotations from patients with liver lesions and CT scans
for two or more visits

Exploitable 2D lesion annotations were available for these 138 patients
(placebo: n = 69; lanreotide: n = 69)

n = 138

n = 150

N = 204

Figure 1. Eligible patients for the RAISE analysis. Patients enrolled in CLARINET with liver lesions and CT scans for
multiple visits were selected for the RAISE analysis. 12 patients were excluded from this analysis during the
annotation process due to the lack of targets or readable examinations.
CT: Computerized tomography.

Materials & methods
Study design & included patients
The study design of CLARINET has been described previously [21]. Briefly, CLARINET was a randomized, double-
blind, placebo-controlled, multinational study that assessed the efficacy and safety of lanreotide in tumor control in
patients with enteropancreatic NETs (N = 204; placebo: n = 103; lanreotide: n = 101). The CLARINET study was
approved by all relevant local ethical committees. Consent was obtained from each patient after a full explanation
of the purpose and nature of all procedures used.

Patients with advanced, well- or moderately-differentiated, non-functioning, somatostatin receptor-positive
enteropancreatic NETs of Grade 1 or low Grade 2 (defined as a tumor proliferation index on staining for the Ki-67
antigen of <10%) and with documented disease-progression status on study were evaluated in CLARINET [21].
Disease progression, and hence PFS, was evaluated using CT scans according to RECIST 1.0 in CLARINET.
CT imaging was performed twice during screening, 12 weeks apart, to determine the baseline disease progression
status of patients; the second image scan was used to determine target lesion sizes and was considered the baseline
assessment in CLARINET.

Patients from CLARINET were selected for analysis in RAISE as described in Figure 1. Analysis was restricted to
the subset of patients with liver lesions (77% of patients in CLARINET) and available CT scans for multiple visits
(n = 150); patients were required to have CT scans for two or more visits to assess which patients had progressed
at each timepoint relative to their last scan. Lesions examined were restricted to the liver for the following reasons:
the liver is thought to be the most common site for NET metastasis [29]; 67% of target lesions in CLARINET were
in the liver; and there was concordance between overall SLD ratio (SLDr) and liver SLDr. In these patients, CgA
was measured at each patient visit.

Imaging data acquisition
The imaging data analyzed in RAISE consisted of 1690 annotated CT scans. Four types of CT scanners were used
(GE, Philips, Siemens, Toshiba), with 25 different reconstruction kernels. Slice thickness ranged from 0.6–0.8 mm
and images were acquired under four different contrast enhancement phases: non-enhanced, arterial, portal and
delayed. Not every patient had all four phases of image acquisition across visits (number of scans, non-enhanced:
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n = 204; arterial: n = 434; portal: n = 607; delayed n = 166). Images acquired under the arterial and portal contrast
enhancement phases were analyzed for the prediction of PFS, given that both enhancements were acquired at the
majority of patient visits.

Annotation & masking
The annotation process involved identifying liver target lesions; target lesions were selected according to RECIST
1.0, which specified up to 10 target lesions per patient, with a maximum of five per organ, using available 1D
annotations from the initial RECIST assessment in CLARINET (which was carried out by Bioclinica). For patients
with no available annotations, the lesions were selected by a radiologist. Only one CT image slice was annotated
per target tumor and annotations included any type of input provided by radiologists on the image, including
manual delineation of the lesions in 2D. There was no consideration of 3D tumors in this analysis. Patients without
readable examinations were excluded during the annotation process (n = 12); exploitable 2D lesion annotations
were therefore available from 138 (placebo: n = 69; lanreotide: n = 69) of the 204 patients enrolled in CLARINET,
representing 68% of the entire group.

For liver images acquired under arterial and portal contrast enhancement phases, an artificial intelligence model,
LiverNet, was developed to segment the liver on CT images. LiverNet has been trained on the liver tumor
segmentation dataset and achieved a DICE coefficient of 0.95 on an external validation cohort. Segmenting the
liver of patients using this ‘unsupervised’ approach allowed for the extraction of features from the liver itself, without
focusing solely on the lesions.

For lesion images acquired under arterial and portal contrast enhancement phases, CT slices were extrapolated
to the lowest pixel spacing. For each CT slice of an annotated tumor, a Hounsfield Unit windowing was applied
for selection of specific ranges of intensities. The CT slice was then cropped on the center of the tumor and both a
liver mask and tumor mask were applied to the slice.

Extraction of features from imaging via deep learning models
The deep learning methodology used to obtain the prediction of PFS at the patient level from imaging data in
these patients is summarized in Figure 2. To compensate for the low quantity of data available, transfer learning
methodology was applied. This technique uses features learned for a different task on a larger dataset (dataset A),
and assumes that the features learned from the larger dataset are relevant enough to be applied to a smaller dataset
of interest (dataset B). For this study, deep learning algorithms were trained on data from ImageNet, a large dataset
of 3.2 million natural images with more than 80,000 classes [30,31].

Deep learning features were extracted from lesion-only and whole-liver images using ResNet50 architecture, a
convolutional neural networks trained on data from the ImageNet database, via transfer learning methodology (Fig-
ure 2). Principal component analysis (PCA) is a multivariate technique that aims to extract important information
and represent these extracted data as a set of new variables, called principal components, to highlight the pattern
of similarity between the observations and variables [32]. PCA was used to reduce the feature dimensionality from
2048 deep learning features, leading to the selection of 20 deep learning components (Figure 2). A multi-layer
perceptron, which is a feedforward artificial neural network consisting of three dense layers, was then used to
predict PFS using these 20 components, aggregated via average pooling. Features were aggregated to account for
the varying number of lesions per patient and to enable PFS prediction at the patient level.

Assessment of deep learning model performance
Six models were used to assess the features captured by deep learning. Deep learning model performance was
compared when using a binary mask, representing the contour of the lesion (with all pixels within the lesion
boundary set to 1 and all the pixels outside the lesion boundary set to 0), versus a lesion mask, representing
the entirety of the lesion (with all pixels outside the lesion’s contour set to 0; Figure 3A). Deep learning model
performance was also compared using lesion-only versus whole-liver image inputs (Figure 3B) and using images
obtained in the portal versus arterial contrast enhancement phase (Figure 3C). For evaluation of deep learning
performance using portal versus arterial phase inputs, features were extracted from lesion-only images.

The performance of a three-variable Cox model was then compared with that of a two-variable Cox model to
assess the additional value of deep learning in the prediction of PFS compared with currently available markers of
progression. The three-variable model combined the deep learning output (using features extracted from lesion-only
images) with the SLDr (defined as the ratio of the SLD at a given patient visit to the SLD at baseline) and change
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Feature extractor Predictor

Exploitable 2D lesion annotations from patients in CLARlNET

Extraction of deep learning features from CT images

End-to-end training
Task A

Dataset A

Transfer learning

Features Prediction

Training

Task B

Dataset B Features Predictor Prediction

Selection of deep learning components and subsequent

dimensionality reduction of features via PCA

Aggregation of deep learning features†

Prediction of PFS

Figure 2. The prediction of PFS by deep learning models through the extraction of lesion features via transfer
learning. In the case of limited data availability for training a model (task B on dataset B), it is possible to use features
learned for a different task (task A) on a larger dataset (dataset A). It is assumed that the features learned on task A
can be applied to task B. The RAISE project trained deep learning algorithms on ImageNet data (dataset A) and then
used them to extract features from CT scan images.
†Deep learning features were aggregated using average pooling.
CT: Computerized tomography; NET: Neuroendocrine tumor; PCA: Principal component analysis; PFS: Progression-free
survival.
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Lesion-only image segmentation

Tumor centered
bounding boxCT slice

Tumor BBox

Liver masked

Tumor masked

Lesion mask Binary mask

Whole-liver image segmentation

CT volume

Liver centered

bounding box

Liver BBox
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Arterial contrast
enhancement phase

Portal contrast
enhancement phase

Figure 3. CT scans of liver images utilized in RAISE. Deep learning model performance was compared using various
CT liver image inputs. (A) Application of a binary mask and lesion mask to CT liver images. The binary mask represents
the contour of the lesion (with all pixels within the lesion boundary set to 1 and all the pixels outside the lesion
boundary set to 0). A lesion mask represents the entirety of the lesion (with all pixels outside of the lesion’s contour
set to 0). (B) Segmentation of lesion-only and whole-liver image inputs. (C) Liver CT images obtained in the portal and
arterial contrast enhancement phases.
CT: Computerized tomography.
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Table 1. Numbers of patients at risk and who had progressed or were censored at each visit in the RAISE analysis.
Visit Lanreotide (n = 69) Placebo (n = 69)

Week 12
At risk (used in imaging models)
Censored
Events

69 (58)
0
0

69 (58)
0
0

Week 24
At risk (used in imaging models)
Censored
Events

60 (51)
3
6

62 (54)
3
4

Week 36
At risk (used in imaging models)
Censored
Events

55 (45)
6
8

52 (45)
7
10

Week 48
At risk (used in imaging models)
Censored
Events

49 (44)
7
13

39 (34)
9
21

Week 72
At risk (used in imaging models)
Censored
Events

41 (30)
10
18

28 (24)
9
32

Patients included in the models for assessment of progression-free survival were those at risk in both the lanreotide and placebo arms.

from baseline in logarithmically transformed CgA concentration (logCgA) at weeks 12, 24, 36, 48 and 72. The
two-variable model was based on the SLDr and change in logCgA only. The performance of the two Cox models
was assessed using c-index values for the prediction of PFS.

All models used for the assessment of deep learning performance were based on inputs per patient at each patient
visit.

Statistical analysis
The performance of deep learning models was evaluated using Cox models, which were trained on samples of
available data at each patient visit (week 12: n = 116; week 24: n = 105; week 36: n = 90; week 48: n = 78; week
72: n = 54), to assess PFS prediction in patients with NETs. The total number of patients at risk or censored and
the number of events in the lanreotide and placebo arms are shown in Table 1. Performances of the models at week
12, 24, 36, 48 and 72 patient visits were compared using c-index values.

Each model was trained and tested using a Monte Carlo cross validation scheme with 100 splits. Monte Carlo
cross validation is used to estimate the prediction ability of a selected model by leaving out a major part of the sample
for validation; this enhances the impact of validation on modelling and increases the probability of selecting the
best model, as compared with leave-one-out cross validation [33]. C-index values reported for each model represent
the mean from these 100 splits. Standard errors of the mean values are also presented. Assessment of the significance
of model comparisons using other test coefficients was not possible due to the cross-validation evaluation.

Results
Patient disposition & baseline characteristics
Exploitable 2D lesion annotations were available from 138/204 patients who were enrolled in CLARINET and
randomized to lanreotide (n = 69/101) or placebo (n = 69/103). Baseline characteristics were similar across
treatment groups (Table 2). Four patients (6%) receiving lanreotide had progressive disease at baseline, compared
with three patients (4%) receiving placebo. In the lanreotide arm, 67% of patients had a Grade 1 tumor (Ki-67
0–2%) versus 72% in the placebo arm; 33% versus 25% had a low Grade 2 tumor (Ki-67 3–10%).

Lesion versus binary mask model
Deep learning models with features computed using normal pixel values (lesion mask model) and those with features
computed using binarized images (binary mask model) demonstrated similar performance at week 12 (Figure 4A).
This similar performance of the lesion mask model versus the binary mask model for the prediction of PFS was
maintained to week 24 (0.70 vs 0.66; Figure 4A). The performance gap then increased at each visit through to
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Table 2. Baseline demographics and patient disease characteristics for the patients in the RAISE analysis.
Characteristic, n (%) Lanreotide (n = 69) Placebo (n = 69)

Male 33 (48) 35 (51)

Prior treatment for NET 8 (12) 10 (14)

Origin of NET

Pancreas 26 (38) 30 (43)

Midgut 24 (35) 28 (41)

Hindgut 9 (13) 3 (4)

Unknown or other 10 (14) 8 (12)

Progressed at baseline 4 (6) 3 (4)

Tumor grade

Grade 1: Ki-67 0–2% 46 (67) 50 (72)

Grade 2: Ki-67 3–10% 23 (33) 17 (25)

Missing data 0 2 (3)

Baseline demographics and disease characteristics for 138 patients enrolled in CLARINET with liver lesions and CT scans who were eligible for the analysis in RAISE. Ki-67 index data were
missing for two patients in the placebo group.
CT: Computerized tomography; NET: Neuroendocrine tumor.

week 72: at this visit, the lesion mask model yielded a c-index value of 0.70 for PFS prediction, compared with a
value of 0.58 for the binary mask model.

Lesion-only versus whole-liver image inputs
C-index values for PFS prediction were generally greater for models using lesion-only images compared with
whole-liver image inputs (Figure 4B). At week 12, the model using lesion-only images achieved a c-index value of
0.66 for the prediction of PFS versus a c-index value of 0.58 using whole-liver images. The performance of the
models was similar at week 24 (model using lesion-only images: 0.70; model using whole-liver images: 0.67). By
week 72, the performance gap had increased, with the model using lesion-only images reaching a c-index value of
0.70 compared with a c-index value of 0.49 for the model using whole-liver images.

Portal versus arterial contrast enhancement phase image inputs
At week 12, the performances of the models using images obtained in the portal (c-index: 0.66) versus arterial
(c-index: 0.69) contrast enhancement phase were similar (Figure 4C).

However, at subsequent visits, models using lesion-only images obtained in the portal contrast enhancement
phase generally yielded better performance for the prediction of PFS than models using images obtained in the
arterial phase. By week 24, models using portal contrast enhancement phase images yielded a c-index value of 0.70
versus a c-index value of 0.61 using images obtained in the arterial contrast enhancement phase. This increased
performance was maintained to week 72 (portal phase model: 0.70; arterial phase model: 0.61).

Model performance using deep learning models, SLDr & logCgA
At week 12, the two-variable Cox model, based on SLDr and logCgA, achieved a c-index value of 0.78 for the
prediction of PFS. The three-variable model, which added the deep learning model output to the two-variable
model, did not show notably improved performance compared with the two-variable model, achieving a c-index
value of 0.80 for the prediction of PFS at week 12 (Figure 5).

No differences in the performances of the two models were reported at each patient visit through 72 weeks. At
week 72, the two-variable Cox model and the three-variable Cox model with the additional deep learning model
output achieved c-index values of 0.86 and 0.87, respectively, for the prediction of PFS.

Discussion
The value of deep learning models in reflecting tumor grading in NETs is becoming increasingly recognized due
to recent studies demonstrating the application of these techniques in predicting grades of NETs from tumor
images [8,26,28]. However, exploration of their value in improving the prediction of treatment response has been
limited to date. The RAISE project aimed to assess the value of deep learning models in the prediction of PFS in
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Figure 4. Comparison of deep learning model
performance across patient visits through
72 weeks. C-index values are reported for the
prediction of PFS of deep learning models at
the patient visits at weeks 12, 24, 36, 48 and 72.
(A) Comparison of the performance of a lesion
mask model versus a binary mask model. (B)
Comparison of model performance using
lesion-only image versus whole-liver image
inputs. (C) Comparison of model performance
using lesion images acquired in the portal
versus arterial contrast enhancement phase.
Reported c-index values represent the mean
average from 100 models using a Monte Carlo
cross validation scheme. Error bars represent
standard error.
PFS: Progression-free survival.

patients with well- or moderately-differentiated NETs, with Ki-67 index of up to 10%, treated with lanreotide or
placebo.

This study found that deep learning models can be trained to capture and model information from CT images,
complementary to the lesion shape and size, that may be relevant to the prediction of PFS. This finding was
demonstrated by the improved performance of a lesion mask model, in which all pixels outside of the lesion’s
contour are set to 0 (black pixels, hence masking any information that could be extracted from the surrounding
area), compared with a binary mask model. In a binary mask model, all pixels within the lesion boundary are set
to 1 (white pixels) and all the pixels outside the lesion boundary are set to 0, meaning that a signal can only be
generated from the lesion’s contours. The performances of the lesion mask and binary mask models were similar
at week 12, indicating that the additional signal in the lesion image that was captured by the deep learning model
is not useful for the prediction of PFS at earlier visits. By week 24, the difference in model performance could
be established, suggesting that deep learning models could have value in predicting treatment response and PFS
from 6 months of treatment onwards. It must be noted, however, that the prediction of PFS made at later stages
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Figure 5. Comparison of three- and two-variable model performance at patient visits through 72 weeks. C-index
values are reported for the prediction of PFS for a three-variable model incorporating the deep learning model
output with SLDr and change from baseline in logCgA and the two-variable model combining SLDr and change from
baseline in logCgA at the patient visits at weeks 12, 24, 36, 48 and 72. Reported c-index values represent the mean
average from 100 models using a Monte Carlo cross validation scheme. Error bars represent standard error.
CgA: Chromogranin A; PFS: Progression-free survival; SLDr: Sum of longest diameter ratio.

was based on a significantly smaller dataset (n = 54 at week 72 compared with n = 116 at week 12) due to study
discontinuations, which may have contributed to the variability in performance.

Models using lesion images obtained in the portal contrast enhancement phase yielded greater predictive
performance than those obtained in the arterial phase. This performance gap may be partially explained by lesion
segmentation being more accurate in the portal versus arterial contrast enhancement phase, allowing the model
to better determine the lesion size and more accurately predict PFS. Hence, this finding may highlight the need
for expert-defined segmentations to attain improved performance of deep learning models, which have previously
been reported to be robust against undesired variation, such as inter-reader variability [25]. Additionally, the number
of patients who had images evaluated in the arterial phase was nearly 30 fewer than the number of patients with
images evaluated in the portal phase, which may have contributed to the difference seen in model performance.
The extensive datasets required for training deep learning algorithms may limit their widespread application in
clinical practice [34].

Deep learning models were not able to improve the prediction of PFS of a model based on SLDr and logCgA
alone in the study population, consistent with findings of greater model performance using lesion-only images
compared with whole-liver image inputs. Lesion shape, defined by the SLD, may therefore provide the most easily
accessible signal for PFS prediction. Combined, these results confirm the pertinence of the SLDr of target lesions
in defining tumor response in patients with NETs, as outlined within RECIST [16]. The weak signal generated by
the deep learning output, which failed to improve performance when included in the three-variable model, may be
partly due to the small dataset in this study and lack of consistent annotations within this dataset.

The sensitivity and specificity of CgA reportedly ranges from 60 to 90% [35]. This limited specificity of the
CgA biomarker may limit its role in assessing treatment response in NETs. New biomarkers are emerging, such
as the NETest, which is reportedly approximately tenfold more accurate compared with CgA for monitoring
disease progression [36]. Combining the deep learning output with more recently developed biomarkers that have
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improved specificity, such as the NETest, may increase the value of deep learning in predicting treatment response
in patients with NETs. This approach has been utilized recently to achieve a sensitivity of 89% and a specificity of
91% via machine learning technology [37]. TGR and response heterogeneity have also recently been identified as
new markers of treatment response. In RAISE, response heterogeneity was identified and analyzed as a potential
predictive biomarker, and has been reported separately [38]. Future work assessing the value of deep learning in PFS
prediction when combined with emerging biomarkers that do not have the usual limitations of RECIST, such as
selection of target and potential heterogeneity of tumor response, may advance the application of deep learning
methods into clinical practice.

The results from RAISE also produced numerous findings from a machine learning standpoint. The utility of
transfer learning methods demonstrated here may improve the application of deep learning techniques in NET
assessment, which was previously limited by the low availability of standardized radiological images due to the
rarity of these tumors [26].

ResNet50 architecture was also shown to be effective in the transfer of features from the CT scan domain,
aligning with other recent studies showing the growing implementation of these deep learning techniques in
imaging practices [39]. Other studies investigating the value of deep learning models in predicting the grades
of NETs have utilized contrast-enhanced MRI [26]. Further work investigating the effectiveness of ResNet50
architecture in transferring features from the MRI domain may improve the signal of the deep learning output.

While the results presented here demonstrate that deep learning algorithms are capable of capturing information
which may be relevant to the prediction of PFS, an inherent limitation of deep learning algorithms is that they are
unable to explain which features their predictions are based upon [40]. Future clarification of the lesion features that
are valuable in determining tumor response may improve the understanding of the relationship between tumor
kinetics and treatment response in patients with NETs.

It must also be noted that this analysis only included a subset of patients from the CLARINET trial, who
had stable disease and substantially greater homogeneity than the general NETs population. Even in this patient
subset, the radiologists participating in the RAISE project noted a relatively low quality of the data (due to
inappropriate filters or slice thickness) and a high heterogeneity of contrast enhancement phases. The different
types of CT scanners and different reconstruction kernels used to obtain the images may have contributed further
to the heterogeneity of the data. Consistent lesion annotations may be even more difficult to obtain in the wider
NETs patient population, where patients typically have disease that varies in its clinical presentation and extent
of progression [41]. Furthermore, median overall survival in patients with NETs reportedly varies between tumor
site, grade and stage [1]. Our study is limited by the lack of subgroup analyses to investigate the potential of deep
learning for PFS prediction in patients with NETs of varying location, grade, and stage and by the low number of
patients included in this study, which limited the approach to building the deep learning models. Further analyses
to determine the potential of deep learning in a larger group of patients with NETs of varying site, grade and stage
are encouraged.

Furthermore, in RAISE, no sensitivity analysis was performed to compare the prediction of PFS in the 138
included patients from CLARINET to the 66 who were not included in the RAISE analysis. Such analysis may
have improved support for the reproducibility of these findings in other patient populations.

Conclusion
Overall, it was found that deep learning algorithms are capable of capturing information from lesion images which
may be relevant to the prediction of PFS, while highlighting the key requirement of extensive annotations for
training deep learning models. The significantly reduced dataset and absence of consistent annotations may have
contributed to the lack of improved performance of deep learning models, compared with models based on SLDr
and logCgA alone, which also confirms the pertinence of SLDr in defining tumor response in patients with NETs.
Further work assessing the predictive power of different deep learning models in a larger dataset and in different
subgroups of patients, possibly utilizing the ResNet50 architecture and transfer learning approaches which showed
promise in this study, is needed. These approaches may optimize the performance of deep learning models in the
prediction of treatment response in patients with NETs.
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Summary points

• Response Evaluation Criteria in Solid Tumors (RECIST) uses the sum of the longest diameter (SLD) of lesions to
estimate the change in tumor burden in patients over a course of treatment and represents an established
method to assess tumor response to systemic therapies in neuroendocrine tumors (NET).

• However, in patients with NETs, tumor response to therapy is often reflected by disease stabilization rather than
significant tumor shrinkage; therefore, classifying a successful treatment response in terms of tumor shrinkage
using RECIST may be an oversimplification.

• An earlier indication of treatment benefit than is provided by RECIST would aid assessment of therapies and may
improve outcomes for patients with NETs.

• The value of deep learning models in improving the accuracy of tumor grading in NETs has been demonstrated,
but their potential in the prediction of treatment response in patients with NETs is yet to be explored.

• The RAISE project aimed to leverage the potential of machine learning to create a multimodal surrogate end
point for RECIST based on biochemical data and imaging biomarkers, to allow earlier prediction of treatment
efficacy and progression-free survival (PFS).

• In this study, deep learning models extracted features from 1690 CT scans from patients from the CLARINET phase
III trial (NCT00353496) with liver lesions and scans for multiple visits over 72 weeks (n = 138/204).

• This study found that deep learning models can be trained to capture and model information from CT images,
complementary to lesion shape and size, that is relevant to the prediction of PFS. This finding was shown by the
improved performance of a lesion mask model (c-index: 0.70) compared with a binary mask model (c-index: 0.58)
at week 72.

• However, no differences were found in the performance of a model combining the deep learning model output
with the SLD ratio (SLDr) and change from baseline in logarithmically transformed CgA concentration (logCgA),
as compared with a model based on SLDr and logCgA alone.

• Overall, it was found that deep learning algorithms are capable of capturing information from lesion images
which may be relevant to the prediction of PFS, while highlighting the key requirement of extensive annotations
for training these models.
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