Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPAR alpha) activity.
Détails
Télécharger: BIB_2BE2B46D7941.P001.pdf (5513.81 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_2BE2B46D7941
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPAR alpha) activity.
Périodique
Proceedings of the National Academy of Sciences of the United States of America
ISSN
1091-6490 (Electronic)
ISSN-L
0027-8424
Statut éditorial
Publié
Date de publication
2011
Peer-reviewed
Oui
Volume
108
Numéro
12
Pages
4794-4799
Langue
anglais
Résumé
In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.
Mots-clé
circadian clock, liver lipid metabolism, nuclear receptors
Pubmed
Web of science
Open Access
Oui
Création de la notice
11/02/2011 9:39
Dernière modification de la notice
20/10/2020 10:12