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ABSTRACT 

In mammals, many aspects of metabolism are under circadian control. At least in part, this 

regulation is achieved by core-clock or clock-controlled transcription factors whose 

abundance and/or activity oscillate during the day. The clock-controlled PAR domain basic 

leucine zipper (PAR bZip) proteins DBP, TEF and HLF have previously been shown to 

participate in the circadian control of xenobiotic detoxification in liver and other peripheral 

organs. Here we present genetic and biochemical evidence that the three PAR bZip proteins 

also play a key role in circadian lipid metabolism by influencing the rhythmic expression and 

activity of the nuclear receptor PPARα. Our results suggest that in liver, DBP, HLF, and TEF 

contribute to the circadian transcription of genes specifying acyl-CoA thioesterases (ACOTs), 

leading to a cyclic release of fatty acids (FA) from thioesters. In turn the FA act as ligands for 

PPARα, and the activated PPARα receptor then stimulates the transcription of genes 

encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and 

glucose metabolism. 

 

Keywords: PAR bZip transcription factors; circadian clock; liver lipid metabolism; 

peroxisome proliferator activated receptor α (PPARα). 
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\body 

In mammals, energy homeostasis demands that anabolic and catabolic processes are 

coordinated with alternating periods of feeding and fasting. There is increasing evidence that 

inputs from the circadian clock are required in addition to acute regulatory mechanisms to 

adapt metabolic functions to an animal’s daily needs. For example, mice with disrupted 

hepatocyte clocks display a hypoglycemia during the postabsorptive phase, supposedly 

because hepatic gluconeogenesis and glucose delivery into the bloodstream are dysregulated 

in these animals (1). 

 The regulation of lipid metabolism is also governed by an interaction between acute 

and circadian regulatory mechanisms, and the three peroxisome proliferator activated 

receptors (PPARα, PPARβ/δ, and PPARγ) play particularly important roles in these 

processes (2). Among them, PPARα acts as a molecular sensor of endogenous fatty acids 

(FA) and regulates the transcription of genes involved in lipid uptake and catabolism. 

Moreover, it accumulates according to a daily rhythm and reaches maximal levels around the 

beginning of feeding time (3, 4). For liver and many other peripheral tissues, feeding-fasting 

rhythms are the most dominant Zeitgebers (timing cues) (5, 6). This observation underscores 

the importance of the crosstalk between metabolic and circadian cycles. 

 Circadian oscillators in peripheral tissues can participate in the control of rhythmic 

metabolism through circadian transcription factors, which in turn regulate the cyclic 

transcription of metabolically relevant downstream genes. The three PAR-domain basic 

leucine zipper (PAR bZip) proteins DBP, TEF, and HLF are examples of such output 

mediators (for review, see 7). Mice deficient of only one or two members of the PAR bZip 

gene family display rather mild phenotypes, suggesting that the three members execute 

partially redundant functions. However, mice deficient of all three PAR bZip genes 
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(henceforth called PAR bZip 3KO mice) have a dramatically reduced life span, due to 

epileptic seizures (8) and impaired xenobiotic detoxification (9). 

 Genome-wide transcriptome profiling of wild-type and PAR bZip 3KO mice has 

revealed differentially expressed genes involved in lipid metabolism, many of which are 

targets of the nuclear receptor PPARα. Here we present evidence for a pathway in which 

PAR bZip transcription factors connect the accumulation and activity of PPARα to circadian 

oscillators in liver. 

 

RESULTS 

Pparα expression in PAR bZip 3KO mice 

Genome-wide microarray transcriptome profiling studies with liver RNA from wild-type and 

PAR bZip 3KO mice revealed differentially expressed genes involved in xenobiotic 

detoxification (9) and lipid metabolism (this paper). The latter included Pparα, a gene 

specifying a nuclear receptor that is well known as a regulator of lipid metabolism, and many 

PPARα target genes (10) (Figure S1A). We validated the reduced accumulation of Pparα 

mRNA and transcripts issued by PPARα target genes by using quantitative RT-PCR analysis 

(Figure 1A, 1B and S1B). The examined PPARα target genes include Cyp4a10 and Cyp4a14, 

encoding enzymes involved in mitochondrial fatty acid ω-oxidation (whose expression is 

strongly reduced in Pparα KO mice, see Figure S2A), and genes specifying enzymes 

involved in fatty acid β-oxidation (Figure S1B). PPARα has also been shown to activate 

transcription from its own promoter, when activated by PPARα agonists (11). To evaluate the 

relevance of this feed-forward loop in circadian Pparα transcription, we compared the 

temporal expression of Pparα pre-mRNA in the liver of wild-type mice with that of non-

productive pre-mRNA transcripts issued by the disrupted Pparα alleles in Pparα KO mice 



 5

(12). As depicted in Figure 1C, the circadian expression was indeed dampened in these 

animals, suggesting that PPARα contributed to the rhythmic transcription of its own gene. 

Therefore, PAR bZip transcription factors may have activated Pparα transcription through an 

indirect mechanism, for example by promoting the cyclic generation of PPARα ligands. 

 Unexpectedly, hepatic PPARα protein accumulation was higher in PAR bZip 3KO 

mice as compared to wild-type mice, in spite of the lower mRNA levels in the former (Figure 

1D). However, nuclear receptors can be destabilized in a ligand-dependent manner (for 

review, see 13). Hence, the higher protein to mRNA level in hepatocytes of PAR bZip 3KO 

mice could indicate that in these animals PPARα was less active and therefore more stable 

than in the liver of wild-type mice. To examine this conjecture, we measured hepatic PPARα 

protein and mRNA accumulation, four hours after an intraperitoneal injection of the synthetic 

PPARα ligand WY14643 into PAR bZip 3KO mice. As shown in Figure 1E and Figure S3, 

the injection of the PPARα ligand led to a decrease of the protein to mRNA ratio, in keeping 

with the model of Kamikaze activators postulated by Thomas and Tyers (14). The lower 

PPARα protein to mRNA ratio in wild-type as compared to PAR bZip 3KO mice may 

therefore indicate that PPARα had a higher activity in the former animals than in the latter. 

 

PAR bZip transcription factors may stimulate PPARα activity through the production 

of PPARα ligands 

FA generated by the metabolism of dietary lipids or de novo synthesis are the best known 

natural ligands for PPARα (15-17). In liver, FA can be produced through the hydrolysis of 

acyl-CoAs by ACOTs (18) and through the hydrolysis of lipids in lipoproteins by lipoprotein 

lipases (LPLs) (19). Interestingly, members of both of these two enzyme families have been 

reported to accumulate according to a daily rhythm in the liver (20-22), and our genome wide 



 6

transcriptome profiling experiments suggested that the mRNAs for these enzymes were 

expressed at reduced levels in PAR bZip 3KO mice. As shown in Figure 2B, the 

accumulation of transcripts specifying ACOTs displayed temporal expression patterns 

expected for direct PAR bZip target genes and was indeed blunted in PAR bZip 3KO mice. 

The Acot genes are all located on a 120 kb cluster on mouse chromosome 12, and a perfect 

PAR bZip DNA binding sequence is located between Acot1 and Acot4 (Figure 2A). At least 

in vitro, this sequence binds PAR bZip in a diurnal manner (Figure 2A), and this could 

explain the rhythmic expression of these genes. However, the phase of Lpl transcript 

accumulation was found to be delayed by 12 hrs when compared to that of Acot expression, 

and we suspected that PAR bZip proteins regulate Lpl transcription via an indirect 

mechanism. Interestingly, Acot and Lpl reached maximal concentrations at ZT12 and ZT24, 

respectively, suggesting a bimodal metabolism of FA in mouse liver: hydrolysis of acyl-

CoAs at the day-night transition and hydrolysis of lipids in lipoproteins at the night-day 

transition. 

 The transcription of Acots and Lpl has previously been reported to be regulated by 

PPARα (21-23), and the expression of these genes, in addition to that of Cyp4a10 and 

Cyp4a14, is activated by injection of WY14643 (Figure S4). We thus decided to examine the 

role of PPARα on their diurnal expression by comparing liver RNAs harvested around the 

clock from Pparα KO and wild-type mice. As shown in Figure S2B, the overall expression 

levels of Acots were only slightly decreased in Pparα KO animals for Acot3 and Acot4, not 

changed for Acot2, but 2.5 fold increased for Acot1. However, zenith levels were reached 

about 4 to 12 hours later in Pparα KO as compared to wild-type mice. All in all the changes 

of Acot and Lpl expression in PPARα deficient mice were complex and reflected perhaps a 

synergistic regulation by PAR bZip transcription factors and PPARα or other transcription 

factors. 
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In the absence of food-derived lipids PPARα ligands can also be generated de novo 

by synthesis of FA by fatty acid synthase (FASN) (24, 25). Interestingly, Fasn expression 

was enhanced in PAR bZip 3KO animals, perhaps to compensate for the deficient import 

and/or metabolism of lipids absorbed with the food. Perhaps for the same reasons, the 

expression of Fabp1 and Cd36, genes encoding proteins involved in fatty acid transport and 

uptake, was also increased in these mice (Figure S1B). As described previously (26), Fasn 

expression was decreased in the liver of Pparα KO mice, probably reflecting a perturbed 

activation of the sterol-response element binding protein (SREBP) in these animals (27). 

 

The downregulation of Acot expression reduces the activity of PPARα target genes 

Our results insinuated that PAR bZip proteins may stimulate the activity of PPARα 

indirectly. According to this scenario, PAR bZip proteins govern the expression of the ACOT 

isoforms 1 to 4, which in turn liberate fatty acids from acyl coA thioesters that may serve as 

PPARα ligands. In order to examine this possibility, the hepatic expression of ACOTs 1 to 4 

was downregulated by the injection of siRNAs into the tail vein (for experimental details, see 

Supporting Informations and Figure S9). As shown in Figures 2C and S9, a decrease in 

ACOT2, ACOT3, and ACOT4 expression was sufficient to specifically inhibit the expression 

of the PPARα target genes Cyp4a10 and Cyp4a14, confirming the role of ACOTs in the 

activation of PPARα. Likewise, the intravenous application of an equimolar mixture of 

ACOT1-4 siRNAs specifically reduced the accumulation of Cyp4a10 and Cyp4a14 mRNAs 

(Figures 2C and S9). 

 

The impaired activity of PPARα in the liver of PAR bZip 3KO mice may be due to a 

deficiency of fatty acids 
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The results presented in the previous section suggested that the downregulation of ACOTs 

and LPL in PAR bZip 3KO mice may have caused a decrease in the levels of hepatic FA that 

can serve as PPARα ligands. We thus measured the levels of various FA in the livers of wild-

type and PAR bZip 3KO mice. In the former, the concentrations of all examined FA 

displayed a robust circadian fluctuation with a maximum at ZT12 (Figure 3A, grey columns). 

In addition, a second, but smaller peak was observed for most of the FA. This bimodal 

distribution was consistent with the hypothesis that the temporal expression of ACOTs and 

LPL (see Figure 2) were responsible for the hepatic accumulation of FA. In PAR bZip 3KO 

mice, the FA levels were low throughout the day (Figure 3A, white columns). Again, these 

results were compatible with a downregulation of ACOTs and LPL in PAR bZip 3KO mice 

(Figure 2B). Importantly, several of the examined FA had previously been identified as 

PPARα ligands. For example, C18:1, C18:2 and C18:3 appear to be particularly potent 

PPARα ligands (15-17, 28), and the decrease in these FA probably accounted for the 

downregulation of PPARα target genes in PAR bZip 3KO animals. The blunted activation of 

the PPARα pathway in PAR bZip 3KO mice would be expected to manifest itself in a broad 

dysregulation of hepatic metabolism and associated changes in blood chemistry  (26, 29). As 

depicted in Figure 3B, PAR bZip 3KO mice showed indeed an increase in the serum 

concentrations of cholesterol, triglyceride and glucose, similar to the observations made with 

Pparα knockout mice. 

 

PAR bZip 3KO mice have an impaired capacity to adapt to caloric restriction  

A large number of genes induced by fasting are direct or indirect target genes of PPARα (30, 

31), and Pparα KO mice have indeed difficulties in adapting to caloric restriction (29, 32-

36). If the activation of the PPARα signaling was inhibited in PAR bZip 3KO mice, one 

would expect that these animals would also have an impaired capacity to adjust their 
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metabolism to reduced food availability. In order to test this hypothesis, we exposed PAR 

bZip 3KO mice to a feeding regimen in which the quantity of food was reduced to 60% of 

what these mice absorbed when food was offered ad libitum. As shown in Figure S5, PAR 

bZip 3KO mice subjected to this regimen suffered from a rapid and dramatic weight loss, as 

compared to wild-type mice. However this difference could not be attributed to a difference 

in energy expenditure, as O2 consumption and CO2 production were nearly identical in wild-

type and PAR bZip 3KO animals (Figure S6). We also compared the food anticipatory 

activities (FAA) of wild-type and PAR bZip 3KO mice (Figure S7A-B). FAA manifests itself 

in the onset of enhanced locomotor activity (wheel-running) a few hours before the time 

when food becomes available. When food availability was limited to a 6-hour time span 

between ZT03 to ZT09, PAR bZip 3KO mice displayed exacerbated FAA and actually 

shifted a large fraction of their wheel-running activity to this time window during the light 

phase. As expected, wild-type mice did show FAA but kept running the wheel mainly during 

the dark phase. These results suggested that the activity associated with food searching 

equaled or even dominated SCN-driven locomotor activity in PAR bZip 3KO animals when 

food availability became limiting. Since PPARα KO mice did not show enhanced FAA 

(Figure S7C), the exacerbated FAA cannot have been caused solely by the impaired PPARα 

activity in PAR bZip 3KO mice. 

 

PPARα ligands can be generated from food-derived and de novo synthesized lipids 

As discussed above, FA PPARα ligands can be generated from diet-derived lipids or de novo 

synthesis by fatty acid synthase (FASN), and the first pathway appeared to be deficient in 

PAR bZip 3KO mice. We wished to determine the expression of putative PPARα target 

genes and genes with key functions in the production of PPARα ligands in wild-type and 

PAR bZip 3KO mice that were fed with a fat-free diet during an extended time span (5 



 10

weeks). Under these conditions, FA can be produced exclusively through de novo synthesis. 

As shown in Figure 4A, the PPARα target genes Cyp4a10 and Cyp4a14 mRNAs 

accumulated to similar levels in wild-type and PAR bZip 3KO mice receiving a fat-free diet, 

unlike of what had been observed in animals fed on normal chow. The similar expression of 

this PPARα target gene in mice receiving a fat-free diet suggested that de novo synthesis of 

FA serving as PPARα agonists was not affected by the absence PAR bZip transcription 

factors, and Fasn mRNA was indeed expressed at similar concentrations in wild-type and 

PAR bZip 3KO mice receiving fat-free food. Hence, the fat-free diet rescued the deficiency 

of PPARα activity in PAR bZip 3KO mice, presumably because de novo synthesis of FA in 

liver did not depend upon pathways requiring the circadian PAR bZip proteins. This 

interpretation was validated by our observation that the hepatic concentrations of various FA 

in wild-type and PAR bZip were similar in wild-type and PAR bZip 3KO mice exposed to a 

fat-free diet (Figure S8). Interestingly, the expression of Pparα and Acots was also rescued 

by the fat-free diet in PAR bZip 3KO mice, and in keeping with earlier observations (11, 21, 

22) both of these genes were indeed activated by PPARα ligands. Lpl expression did not 

exhibit large differences between mice fed with normal and fat-free chow. Similarly, blood 

glucose, cholesterol, and triglyceride levels were not significantly different between wild-

type and PAR bZip 3KO mice kept on a fat-free diet (Figure 4B), unlike of what we have 

observed for animals fed with normal chow. 

 

DISCUSSION 

The PAR bZip transcription factors DBP, HLF, and TEF regulate circadian PPARα 

activity. 

Here we present evidence for a novel clock output pathway operative in hepatocytes, which 

connects the PAR bZip transcription factors DBP, HLF, and TEF to the circadian activity of 
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PPARα. This nuclear receptor has long been known to play a key role in the coordination of 

lipid metabolism, and like several other nuclear receptors it accumulates in a circadian 

manner (3, 4). Our studies revealed that Pparα mRNA levels were reduced in PAR bZip 

3KO mice. However, PPARα protein accumulated to higher than wild-type levels in these 

animals, presumably due to its reduced transactivation potential. 

Our gene expression studies, combined with hepatic FA measurements, offered a 

plausible biochemical pathway for the PAR bZip-dependent activation of PPARα , 

schematized in Figure 5. PAR bZip proteins drive directly or indirectly the expression of 

Acots and Lpl, which in turn release FA from acyl-coA thioesters and lipoproteins, 

respectively. FA then serve as ligands of PPARα and initiate a feed-forward loop, in which 

PPARα enhances transcription from its own gene. This scenario is supported by our 

observation that the siRNA-mediated dampening of Acot2, Acot3, and Acot4 expression led 

to a downregulation of the expression of Cyp4a10 and Cyp4a14, two bonafide target genes of 

PPARα. 

 The accumulation cycles of Acots and Lpl mRNA had widely different phases; yet 

both were strongly attenuated in PAR bZip 3KO mice. While the phase of Acot expression 

was compatible with that expected for direct PAR bZip target genes, Lpl mRNA reached 

maximal levels at a time (ZT24) when all three PAR bZip proteins were expressed at nadir 

values. We thus suspect that Lpl transcription was controlled by a complex pathway, in which 

the precise roles of PPARα and PAR bZip proteins remain to be clarified. The temporal 

accumulation of most determined FA revealed a major peak at ZT12, when Acots were 

maximally expressed, and a minor peak at ZT24, when Lpl was maximally expressed. The 

control of FA catabolism through β-oxidation and lipid uptake are major functions of 

PPARα. On first sight the low hepatic FA levels in PAR bZip 3KO mice, in which PPARα 

activity appeared to be blunted, was perhaps surprising. However, this apparent conundrum 
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can be rationalized as follows. Free FA are natural ligands for PPARα, and a minimal FA 

threshold concentration may thus be required for the activation of PPARα  (15-17, 28). 

Moreover, acyl-CoA esters antagonize the activation of PPARα by free FA (37, 38). Since, 

due to the reduced expression of Acots in PAR bZip 3KO mice, these esters were probably 

less efficiently hydrolyzed, the ratio of free FA to acyl-CoA esters is expected to be lower in 

these animals as compared to wild-type mice. The attenuation of PPARα activity in the PAR 

bZip 3KO mice is expected to be associated with an impaired uptake of FA from the blood 

(39-41). 

 PPARα expression has first been found to follow a daily rhythm by Lemberger et al., 

(3). Subsequently, Oishi et al. (42) demonstrated that the core clock transcription factor 

CLOCK is required for circadian Pparα transcription and that CLOCK binds to a series of E-

box sequences within the first intron. This might explain why PPARα expression is still 

circadian in PAR bZip 3KO mice, albeit with reduced amplitude and magnitude. 

 

PPARα target gene expression is rescued in PAR bZip 3KO mice fed with a fat-free diet 

In animals kept on a fat-free diet hepatic FA synthesis is strongly induced (43). We thus 

suspected that the intracellular availability of FA rescued PPARα mediated transcription in 

PAR bZip 3KO mice. Indeed, the production of mRNAs encoding enzymes implicated in FA 

synthesis, such as FASN, was strongly induced in wild-type and PAR bZip 3KO mice 

receiving fat-free diet. Furthermore, in contrast to mice fed on a normal chow, PAR bZip 

3KO and wild-type animals fed on a fat-free diet accumulated similar hepatic levels of 

mRNAs specified by Pparα, and the putative PPARα target genes Cyp4a10 and Cyp4a14. 

We did notice, however, that Acot expression, whose overall magnitude was only slightly 

changed in PPARα KO mice, was also rescued in PAR bZip 3KO mice kept on a fat-free 

diet. Hence, as previously suggested (21, 22), Acot transcription was also augmented by 
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PPARα, but probably required high concentrations of natural ligands (i.e. FA). It is 

noteworthy that 1-palmitoyl-2-oleoly-sn-glycerol-3-phosphocholine (16:0/18:1-GPC), whose 

FASN-dependent synthesis was activated under a fat free diet, has recently been discovered 

as a highly potent PPARα ligand (24). 

 

PAR bZip 3KO mice are unable to adapt to restricted feeding 

Wild-type mice exposed to caloric restriction lost about 13 % of their body mass during the 

first three weeks and then kept their mass within narrow boundaries over several months. In 

contrast, PAR bZip 3KO animals rapidly lost more than 20 % of their weight and had to be 

euthanized after about a week, since they probably would have succumbed to wasting after 

this time period. At least in part, the failure of PAR bZip deficient mice may be due to a 

decreased PPARα activity, as Pparα KO mice have been reported to adapt poorly to calorie 

restriction (29, 32-36). However, not all phenotypes of PAR bZip 3KO mice related to 

feeding could be assigned to an impaired PPARα activity. Thus, in contrast to PAR bZip 

3KO mice, Pparα KO mice did not exhibit an exacerbated food anticipatory activity (FAA). 

The capacity to adapt activity and metabolism to feeding-fasting cycles is primary to 

an animal’s health and survival, and the disruption of the circadian timing system has indeed 

been linked to obesity and other metabolic disorders (44-46). 
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EXPERIMENTAL PROCEDURES 

Animal housing conditions 

All animal studies were conducted in accordance with the regulations of the veterinary office 

of the State of Geneva and of the State of Vaud. PAR bZip 3KO mice with disrupted Dbp, 

Tef and Hlf genes (8) and mice with Pparα null alleles (12) have been described previously. 

Mice were maintained under standard animal housing conditions, with free access to food and 

water, and a 12h light/12h dark cycle. Specific treatments and feeding regimens are described 

in Supporting Informations. 

 

Blood chemistry  

Blood samples were harvested after decapitation of the animals, and sera were obtained by 

centrifugation of coagulated samples for 10 minutes at 4500 rpm at room temperature. The 

sera were stored at -20°C until analyzed. Triglycerides and total cholesterol were measured 

using commercially available enzymatic kits according to the manufacturer’s instructions 

(Triglyceride; Cholesterol; Roche/Hitachi Mannheim GmbH, Mannheim, Germany). Glucose 

was measured using the glucose oxidase method adapted to rodent (GO assay kit Sigma-

Aldrich, Handels GmbH, Wien, Austria). 

 

Liver fatty acids measurement: 

Mouse livers were homogenized in 0.5 ml of phosphate buffered saline and 0.5 ml of 

methanol. This procedure inhibits triglycerides lipases and allows their elimination. Each 

sample was immediately spiked with 50 nmol of 15:0 FA as an internal standard. 

Subsequently, lipids were extracted according to Bligh and Dyer (47) and fatty acids were 

then measured by GC-MS as described in Supplemental Information. 
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RNA isolation and analysis 

Livers were removed within 4 min after decapitation, frozen in liquid nitrogen, and stored at -

70°C until use. The extraction of whole-cell RNA and its analysis by real-time RT-PCR were 

conducted as described previously (8). The values were normalized to those obtained for 

Gapdh mRNA. Sequences of the oligonucleotides used are given in Supplemental 

Information. 

 

Preparation of nuclear protein extracts and Western blotting 

Liver nuclear proteins were prepared by using the NaCl-Urea-NP40 (NUN) procedure (48). 

Western blotting was carried out as described (9). The rabbit anti-PPARα and murine anti-

U2AF65 antibodies were purchased from Cayman chemical (Ann Arbor, MI) and Sigma (St. 

Louis, MO), respectively. 
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FIGURE LEGENDS 

Figure 1: Expression of PPARα in PAR bZip knockout mice  

A. Temporal expression of Pparα mRNA in the livers of wild-type and PAR bZip 3KO mice. 

RNA levels were estimated by real-time RT-PCR. Mean values ± SEM obtained from six 

animals are given. 

B. Temporal expression of the PPARα target genes Cyp4a10 and Cyp4a14 in the liver of 

wild-type and PAR bZip 3KO mice, as determined by real-time RT-PCR. Mean values ± 

SEM obtained from six animals are given. 

C. Temporal expression of Pparα pre-mRNA transcripts in the livers of wild-type or Pparα 

KO mice. A PCR amplicon located in the second intron was used in these quantitative RT-

PCR experiments. Mean values ± SEM obtained from four animals are given. 

D. Temporal expression of PPARα protein in liver nuclear extracts from PAR bZip 3KO and 

wild-type mice. Signals obtained with U2AF65 antibody were used as loading controls 

(U2AF65 is a constitutively expressed splicing factor). 

E. Ratio of liver PPARα protein/Pparα mRNA levels after injection of the synthetic PPARα 

ligand WY14643 or its solvent (50% DMSO) in PAR bZip 3KO mice at ZT2. Mean values ± 

SEM obtained from six animals are given. The raw data used for these computations are 

presented in Figure S3. 

The Zeitgeber times (ZT) at which the animals were sacrificed are indicated. * p≤0.05, ** 

p≤0.01 KO vs. WT, Student t-test. 

 

Figure 2: Regulation of the Acot genes cluster and lipid metabolizing enzymes in PAR b 

Zip 3KO and Ppara KO mice. 

A. Organization of the mouse Acot gene cluster on chromosome 12. A sequence perfectly 

matching the PAR bZip consensus binding site is located between Acot1 and Acot4. An 
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EMSA experiment with liver nuclear extracts from wild-type and PAR bZip 3KO mice 

shows that PAR bZip transcription factors bind this sequence in a diurnal fashion. 

B. Temporal expression of acetyl-CoA Thioesterase (Acot) 1 to 4, Lipoprotein Lipase (Lpl) 

and Fatty acid Synthase (Fasn) mRNA in PAR bZip 3KO mice. Real time RT-PCR 

experiments were conducted with whole cell liver RNAs from six animals for each time 

point. The Zeitgeber times (ZT) at which the animals were sacrificed are indicated. Mean 

values ± SEM are given. * p≤0.05, ** p≤0.01, *** p≤0.001 KO vs. WT, Student t-test. 

C. Expression of Cyp4a10 and Cyp4a14 mRNA in mouse liver after treatment with siRNAs 

directed against Acot genes. Real time RT-PCR experiments were conducted with whole cell 

liver RNAs from four (Control and individual Acot siRNA) or six animals (pool of the four 

precedent Acot siRNA). Mean values ± SEM are given. * p≤0.05, ** p≤0.005, Control 

siRNA vs. Acot siRNA, Student t-test. 

 

 

Figure 3: Lipid metabolism in PAR bZip 3KO mice. 

A. Temporal accumulation of FA (C16:0, C18:0, C18:1w7, C18:1w9, C18:2w6 and 

C20:4w6) in the livers of wild-type and PAR bZip 3KO mice. Mean values ± SEM obtained 

from four animals are given. The Zeitgeber times (ZT) at which the animals were sacrificed 

are indicated. Note that the profiles of accumulation are daytime-dependent for all analyzed 

FA in wild-type animals (ANOVA F[5,18] = 3.29, 3.72, 9.00, 4.50, 3.86 and 4.01 and p ≤ 

0.05, 0.025, 0.02, 0.015, 0.025 and 0.025 respectively), whereas they are low and virtually 

invariable in KO animals. In all the cases, values where statistically different between wild-

type and KO animals (ANOVA F[1,46] = 15.85, 13.11, 10.95, 18.00, 13.96 and 11.62, and p 

≤ 0.0005, 0.001, 0.0025, 0.0001, 0.001 and 0.002, respectively). 
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B. Serum concentrations of triglycerides, cholesterol, and glucose in wild-type and PAR bZip 

3KO animals. Mean values ± SEM obtained from 12 wild-type and 17 knockout animals are 

given. For triglycerides, values obtained between ZT4 and ZT14 were separated from the 

values obtained between ZT16 and ZT2, due to their strong circadian variations. * p≤0.05, ** 

p≤0.01, *** p≤0.001 KO vs. WT, Student t-test. 

 

Figure 4: Effect of fat free diet on PPARα target genes expression and serum 

biochemistry 

A. Mice were fed ad libitum during five weeks with a fat free diet. For each condition, four 

mice were sacrificed at ZT0 and ZT12. Total liver RNAs were extracted and analyzed by real 

time RT-PCR for the expression of mRNAs specified by PPARα target genes and Fasn, a 

marker gene of lipogenesis that is induced by the fat free diet. # p≤0.05, ## p≤0.005, ### 

p≤0.005 fat free vs normal diet in 3KO; § p≤0.05, §§ p≤0.01, §§§ p≤0.00005 fat free vs 

normal diet in wild-type; * p≤0.05 KO vs. WT, Student t-test. 

B. Serum concentrations of triglycerides, cholesterol and glucose were measured in wild-type 

and PAR bZip 3KO animals fed with regular or fat free chow. Mean values ± SEM obtained 

from eight wild-type and knockout animals are given. For FA, values obtained between ZT4 

and ZT14 were separated from the values obtained between ZT16 and ZT2. * p≤0.05 fat free 

vs normal diet in 3KO. 

 

Figure 5: Model showing the regulation of PPARα by metabolism and PAR bZip 

transcription factors. 

Left panel. Under normal diet conditions, the expression of Acetyl-CoA Thioesterases 

(ACOTs) are under the control of circadian PAR bZip transcription factors. These 

transcription factors thus control the release of free fatty acid from acyl-coA thioesters, and 
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the free FA stimulate PPARα activity. The activated PPARα then stimulates transcription of 

Acot and Lpl, and in a feed-forward loop reinforces its own expression and activity. 

Right panel. Under a fat free diet, all free FA are derived from the de novo synthesis pathway. 

Under these conditions, PPARα activity is not dependent on PAR bZip transcription factors. 
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Additional experimental procedures 

 

Animal experiments 

WY14643 treatment by intraperitoneal injection. Two groups of 6 PAR bZip 3KO male mice 

were injected intraperitoneally at ZT2 with 100 mg/Kg WY14643 (Biomol International, 

Plymouth Meeting, PA) (10 mg/ml in 50% DMSO) or the equivalent volume of vehicle. Four 

hours after injection, mice were sacrificed and livers were removed and snap-frozen in liquid 

nitrogen, or immediately processed for the purification of the nuclear proteins used in the 

immunoblot experiments. 

 

In vivo siRNA treatment. Chemically modified Stealth RNAi
TM

 siRNA duplexes (Invitrogen) 

complementary to the four Acots genes were complexed with Invivofectamine® 2.0 (Invitrogen) 

according to manufacturer recommendation before the injection. For each of the four examined 

Acots (Acots 1 to 4) six siRNAs with different sequences were tested in two different mice, and 

the one yielding maximal suppression was selected for the experiments shown in Figures 2C and 

S9. The sequences of these siRNA are given below. The solution containing control siRNA (a 

siRNAs with sequences that do not target any gene product that have been tested by microarray 

analysis and shown to have minimal effects on gene expression), individual Acot siRNAs or an 

equimolar mix of the four Acot siRNAs were injected intravenously through the tail vein of 8 

week old Balb/c mice at ZT12 at a dose of 7 mg/kg. 48 hours after the injection, mice were 

sacrificed and livers were removed and snap-frozen in liquid nitrogen, and stored at -70 °C 

before RNA was extracted. 

 



Calorie Restriction. PAR bZip 3KO mice and
 
wild-type siblings (9 knockouts and 7 wild-type 7 

to 9 weeks male mice) were fed regular chow (ref 3800 from Provimi Kliba, Switzerland. Diet 

composition: 24 % protein, 47.5 % carbohydrate, 4.9 % fat) ad
 
libitum for at least three months. 

Mice were then separated (by placing them into individual cages) and fed with powdered food 

that was delivered by a computer-driven feeding machine (1). Average food consumption was 

determined to be 4.2 g/day/mouse for animals fed ad libitum with regular chow, and this value 

was used as the normal diet control value in the caloric restriction studies.
 
The animals were then 

subjected to a calorie diet reduced by 40% (i.e. 2.52 g/day/animal distributed into 20 daily 

portions delivered every 30 min between ZT12 and ZT22). The animals were weighed twice a 

week in the morning for 11 weeks. 

 

Temporally restricted feeding. 3.4 g of powdered chow (80% of the normal diet control value) 

were offered in 12 portions between ZT03 and ZT09 by a computer-driven feeding machine (1). 

The wheel-running activities of the animals were recorded as described previously (2). 

 

Fat-free feeding regimen. 8 week old PAR bZip 3KO mice and
 
wild-type siblings (4 males and 

4 females of each genotype) were fed with regular chow ad
 
libitum for at least three months. The 

food was then replaced by a fat free diet (TD.03314 from Harlan Teklad, Madison, WI. Diet 

composition: 20.1 % protein, 62.9 % carbohydrate, 0 % fat) for 5 weeks. 

 

Electromobility shift assay 

The radio-labeled probe was prepared by annealing two oligonucleotides encompassing the PAR 

bZip binding site present in the Acot genes cluster and by filling in the 5’ overhang with [ -



32
P].dCTP and Klenow DNA polymerase. The sequences of these oligonucleotides were 5’-

CCATAAAATTACATAAG-3’ and 5’-TTGATTACTTATGTAATTTTATGG-3’. Twenty 

micrograms of liver nuclear extract were incubated with 100 fmoles of the double-stranded 

oligonucleotide in a 20 l reaction containing 25 mM HEPES (pH 7.6), 60 mM KCl, 5 mM 

MgCl2, 0.1 mM EDTA, 7.5% glycerol, 1 mM DTT, 1 g/ l salmon sperm DNA. After an 

incubation of 10 min at room temperature, 2 l of a 15% Ficoll solution were added, and the 

protein-DNA complexes were separated on a 5% polyacrylamide gel in 0.25 x TBE. 

 

GC-MS determination of fatty acids concentrations 

Lipid extracts were taken to dryness in a speed-vac evaporator and resuspended in 240 µl of 50% 

weight/volume KOH and 800 µl ethanol for the alkaline hydrolysis of lipids. After a 60 min 

incubation at 75°C, FA were extracted with 1 ml of water and 2 ml of hexane. The hexane phase 

was taken to dryness and redissolved in 50 µl of a pentafluoro-benzyl bromide solution (3.4 % in 

acetonitrile) and 10 µl of N,N-diisopropyl ethanolamine. After 10 min of incubation at room 

temperature, samples were evaporated under a gentle stream of nitrogen and resuspended in 50 

µl of hexane. 

A Trace-DSQ GC-MS (Thermo Scientific, Austin, TX) equipped with a TR5MS 30m column 

was used for the mass-spectrometric analysis of lipids by gas chromatography. Helium was used 

as carrier gas at 1 ml/min in splitless mode at 300°C injector temperature. The initial oven 

temperature of 150°C was held for 1min and then the temperature first was ramped up to 200°C 

at a rate of 25°C/min. This was followed by a ramp of 12.5°C/min up to 325°C, where the 

temperature was held for another 2min. The mass spectrometer was run in negative ion chemical 

ionization (NICI) mode where the FAs were detected in full scan as carboxylates after loss of the 



pentafluoro benzyl moiety. Methane was used as CI gas, the source temperature was set to 250°C 

and the transfer line temperature was 330°C. Peak areas for FA were calculated by Xcalibur 

QuanBrowser and related to the internal standard peak area. 



 

Sequences of the primers used for Real-time PCR 

 

Gene Forward primer Reverse primer 

Ppar  intron 1 TGGCCCCAACAGTAGGGTAG TGGAGGGCAGAGACATAGGG 

Cyp4a10 GGAGCTCCAATGTCTGAGAAGAGT TCTCTGGAGTATTCTTCTGAAAAAGGT 

Cyp4a14 TCTCTGGCTTTTCTGTACTTTGCTT CAGAAAGATGAGATGACAGGACACA 

Acot1 GACTGGCGCATGCAGGAT CCAGTTTCCATAGAACGTGCTTT 

Acot2 CAAGCAGGTTGTGCCAACAG GAGCGGCGGAGGTACAAAC 

Acot3 GGTGGGTGGTCCTGTCATCT TGTCTTCTTTTTGCCATCCAAAT 

Acot4 GGCCTTGAACTCACAGGGATT AGGTAGGGCCGAGCCTTTAA 

Acox1 GGATGGTAGTCCGGAGAACA AGTCTGGATCGTTCAGAATCAAG 

Acaab1 (Thiolase B) TCCAGGACGTGAAGCTAAAGC CATTGCCCACGGAGATGTC 

Cpt1 CCTGGGCATGATTGCAAAG ACGCCACTCACGATGTTCTTC 

Acadm (Mcad) AGCTGCTAGTGGAGCACCAAG TCGCCATTTCTGCGAGC 

Fabp1 (L-Fabp) CCAGGAGAACTTTGAGCCATTC TGTCCTTCCCTTTCTGGATGA 

Cd36 GATGACGTGGCAAAGAACAG TCCTCGGGGTCCTGAGTTAT 

Srebp2 GCGTTCTGGAGACCATGGA ACAAAGTTGCTCTGAAAACAAATCA 

Ldlr TGGGCTCCATAGGCTATCTG GCCACCACATTCTTCAGGTT 

 

 

For the other genes, we used the following designed primers from Applied Biosystems: 

Gapdh Mm99999915_g1 

Ppar   Mm00440939_m1 

Lpl  Mm00434770_m1 

Fasn  Mm01253300_g1 



 

Sequences of Acot siRNA 

 

Gene Sequence 

Acot1 AGCUCUUCUUGUCUACCAGAGGGCU 

Acot2 CCCAAGAGCAUAGAAACCAUGCACA 

Acot3 GAACCCGAACCGGAUGGCACCUACU 

Acot4 CAACGUCAUAGAAGUGGACUACUUU 

 



Legends to Supplemental Figures 

 

Figure S1: Hepatic expression of PPAR  target genes in PAR bZip 3KO mice. 

A. Microarray data obtained with PAR bZip 3KO mouse liver RNA (3) were compared to data 

obtained with Ppar  KO mouse liver RNA (4). Genes downregulated in both genotypes with 

regard to their wild-type counterparts are listed. The table corresponds to the list of genes 

downregulated more than 1.25-fold in at least one of the knockout genotypes (when compared to 

strain-matched wild-type mice). 

B. Temporal hepatic expression of genes coding for enzymes involved in peroxisomal fatty acid 

-oxidation [Acyl-CoA oxidase 1 (Acox1) and Acyl-CoA acyltransferase 1B or Thiolase B 

(Acaa1b)], mitochondrial fatty acid -oxidation [Carnitine palmitoyltransferase 1 (Cpt1) and 

Mitochondrial medium-chain acyl-CoA dehydrogenase or MCAD (Acadm)] and fatty acid 

binding and transport (fatty acid-binding protein 1 or L-FABP (Fabp1) and CD36 (Cd36)] in 

wild-type and PAR bZip 3KO mice, as determined by real-time RT-PCR. Mean values ± SEM 

obtained from four animals are given.* p≤0.05, ** p≤0.01, KO vs. WT, Student t-test. 

As for Cyp4a genes, the PPAR  target genes coding for enzymes involved in fatty acid -

oxidation are also downregulated [Acox1, Acaa1b (see also figure S1A for these genes) and 

Cpt1] or not changed (Acadm) in the liver of PAR bZip 3KO mice. Interestingly, the genes 

coding for proteins involved in the fatty acid transport exhibit an increased expression in PAR 

bZip 3KO mice, confirming previously published microarray data (3). Similar to what has been 

observed for Fasn expression, the increased expression of these genes is probably an indirect 

consequence of the disrupted fatty acid metabolism in PAR bZip 3KO mice, perhaps to 

compensate for the deficient import and/or metabolism of lipids absorbed with the food. 



 

Figure S2: Temporal expression of the PPAR  target genes Cyp4a10 and Cyp4a14 in the 

liver of Ppar  KO and wild-type mice. 

A. Temporal expression of Cyp4a10 and Cyp4a14 in the liver of wild-type and Ppar  KO mice. 

B. Temporal expression of acetyl-CoA Thioesterase (Acot) 1 to 4, Lipoprotein Lipase (Lpl) and 

Fatty acid Synthase (Fasn) mRNA in wild-type and Ppar  KO mice. 

Real time RT-PCR experiments were conducted with whole cell liver RNAs from four animals 

for each time point. The Zeitgeber times (ZT) at which the animals were sacrificed are indicated. 

Mean values ± SEM obtained from four animals are given.* p≤0.05, ** p≤0.01, *** p≤0.001 KO 

vs. WT, Student t-test. 

 

Figure S3: PPAR  protein/mRNA ratio after the activation of PPAR  by its synthetic 

ligand WY14643. 

Six PAR bZip 3KO mice were injected intraperitoneally (i.p.) with DMSO (left panel) or 

PPAR  ligand WY14643 (100 mg/kg) at ZT2. Livers were harvested four hours later, and 

nuclear proteins and whole cell RNAs were extracted. The PPAR  protein levels were quantified 

by western blot experiments (upper panel), and Ppar  mRNA was quantified by real time RT-

PCR (middle panel). Individual ratios between liver PPAR  protein and Ppar  mRNA are 

plotted in the bottom panel. The mean values ± SEM are given in Figure 1E. 

 

Figure S4: Activation of hepatic Cyp4a, Acots and Lpl expression after injection of the 

PPAR  activator WY14643. 



Six PAR bZip 3KO male mice were injected i.p. with DMSO or PPAR  ligand WY14643 (100 

mg/kg) at ZT2. Livers were harvested four hours later, and whole cell RNAs were extracted. 

mRNAs of the indicated genes were quantified by real time RT-PCR. Mean values ± SEM are 

given.* p≤0.05, ** p≤0.005, *** p≤0.0005 DMSO vs. WY14643 injection, Student t-test. 

 

Figure S5: Response of PAR bZip 3KO mice to caloric restriction 

Wild-type (black line) and PAR bZip 3KO (dotted line) animals were fed with a diet containing 

only 60% of the normal calorie consumption during eleven consecutive weeks. Animals were 

weighted twice a week during this period. Mean relative weight changes ± SEM obtained from 

seven wild-type and nine knockout animals are given. 

 

Figure S6: PAR bZip 3KO mice display normal O2 consumption and CO2 production 

Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by indirect 

calorimetry with the Comprehensive Lab Animal Monitoring System (CLAMS) (Columbus 

Instruments, Columbus, OH). After three days of accommodation, VO2 (A) and VCO2 (B) were 

recorded during a 24 hours period. Mean values ± SD obtained from four animals of each 

genotype are given. 

 

Figure S7: Food anticipatory activities (FAA) of wild-type, PAR bZip 3KO, and Ppar  KO 

mice 

A. Examples of FAA recordings of wild-type (left panel) and PAR bZip 3KO (right panel) mice. 

Animals received 80% of their normal food consumption between ZT3 and ZT9 for the duration 

of the experiment. 



B. Percentage mean activity during a 24-hour period for animals subjected to temporally 

restricted feeding. Mean values ± SEM obtained from four animals of each genotype (recorded 

between day 10 and day 20 after the onset of restricted feeding) are given. The areas under which 

values are significantly different (Student’s t test p values ≤ 0.05) between PAR bZip 3KO and 

wild-type mice are indicated by black lines on top of the figure. 

C. Examples of FAA of wild-type (left panel) and Ppar  KO (right panel) mice. Animals 

received 80% of their normal food consumption between ZT3 and ZT9 for the duration of the 

experiment. 

 

Figure S8: Liver fatty acid levels in mice exposed to a fat free diet. 

Concentrations of fatty acids (C16:0, C18:0, C18:1w9, C18:1w11, C18:2 and C20:4) in the liver 

of wild-type and PAR bZip 3KO mice at ZT0 and ZT12. Mean values ± SEM obtained for four 

animals are given. In none of the cases did we detect statistically different values with regard to 

either daytime or genotype. 

 

Figure S9: Effect of ACOT siRNA on Acot genes and non-PPAR  regulated genes 

expression. 

A. Accumulation of Acot mRNAs in mouse liver 48 hours after the treatment with siRNA 

directed against Acot genes. siRNAs act mainly by decreasing the levels of their target mRNA 

(5), and the cellular concentrations of Acot1, Acot2, and Acot4 mRNA were indeed reduced to 

10% to 50% after the injection of their respective siRNAs. None of the six examined Acot3 

siRNAs (see additional experimental procedures) reduced its target mRNA significantly, yet 

three of them did lower the expression of the PPAR  target genes Cyp4a10 and Cyp4a14. A 



similar observation was made for the mix of the four Acot siRNAs. Indeed, it has recently be 

shown that siRNAs, similar to miRNAs, can also act by inhibiting translation of their target 

mRNA, without reducing the levels of their target mRNAs (6, 7). This phenomenon could 

explain the observation that Acot3 siRNA and the mix of the four Acot siRNAs strongly reduced 

the expression of Cyp4a10 and Cyp4a14. 

B. Expression of genes involved in lipid metabolism (Srebp2 and Ldlr), two transcripts whose 

levels were similar in wild-type and PPAR  or PAR bZip triple knockout mice (3, 8, 9). Note 

that neither individual Acot siRNAs nor the mix of the four Acot siRNAs significantly affected 

the accumulation of Srebp2 and Ldlr mRNAs. This results support the specificity of the effect of 

the Acot siRNAs for PPAR  target genes. 

Real time RT-PCR experiments were conducted with whole cell liver RNAs from four (Control 

and individual Acot siRNAs) or six animals (pool of the four precedent Acot siRNAs). Mean 

values ± SEM are given. * p≤0.05, ** p≤0.01, *** p≤0.001 Control siRNA vs. Acot siRNAs, 

Student t-test. 
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Figure S1

Affy ID Gene Symbol Description PPAR  KO PARbZip 3KO
1424853_s_at Cyp4a10 cytochrome P450, family 4, subfamily a, polypeptide 10 -61.23 -6.03
1423257_at Cyp4a14 cytochrome P450, family 4, subfamily a, polypeptide 14 -32.25 -2.73
1424716_at Retsat retinol saturase (all trans retinol 13,14 reductase) -4.49 -1.9
1419430_at Cyp26a1 cytochrome P450, family 26, subfamily a, polypeptide 1 -4.12 -1.98
1424715_at Retsat retinol saturase (all trans retinol 13,14 reductase) -3.88 -1.82
1440134_at Cyp4a10 cytochrome P450, family 4, subfamily a, polypeptide 10 -3.65 -1.75
1448080_at E2f8 E2F transcription factor 8 -3.44 -7.28
1448491_at Ech1 enoyl coenzyme A hydratase 1, peroxisomal -3.20 -1.35
1428223_at Mfsd2 major facilitator superfamily domain containing 2 -3.11 -1.48
1451084_at Etfdh electron transferring flavoprotein, dehydrogenase -2.57 -1.31
1421011_at Dhrs8 dehydrogenase/reductase (SDR family) member 8 -2.49 -1.61
1431833_a_at Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 -2.49 -1.23
1424451_at Acaa1b acetyl-Coenzyme A acyltransferase 1B -2.45 -1.37
1423858_a_at Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 -2.30 -1.21
1421430_at Rad51l1 RAD51-like 1 (S. cerevisiae) -2.18 -2.44
1416946_a_at Acaa1b acetyl-Coenzyme A acyltransferase 1B -2.17 -1.27
1416947_s_at Acaa1b acetyl-Coenzyme A acyltransferase 1B -2.14 -1.21
1454159_a_at Igfbp2 insulin-like growth factor binding protein 2 -2.13 -1.5
1449051_at Ppara peroxisome proliferator activated receptor alpha -2.06 -1.55
1434642_at Dhrs8 dehydrogenase/reductase (SDR family) member 8 -1.83 -1.28
1422526_at Acsl1 acyl-CoA synthetase long-chain family member 1 -1.70 -1.22
1415776_at Aldh3a2 aldehyde dehydrogenase family 3, subfamily A2 -1.63 -1.29
1450643_s_at Acsl1 acyl-CoA synthetase long-chain family member 1 -1.61 -1.27
1415965_at Scd1 stearoyl-Coenzyme A desaturase 1 -1.56 -1.49
1418989_at Ctse cathepsin E -1.54 -1.56
1438055_at Rarres1 retinoic acid receptor responder (tazarotene induced) 1 -1.51 -1.44
1423883_at Acsl1 acyl-CoA synthetase long-chain family member 1 -1.49 -1.23
1415964_at Scd1 stearoyl-Coenzyme A desaturase 1 -1.42 -1.45
1422032_a_at Za20d3 zinc finger, A20 domain containing 3 -1.42 -1.37
1416409_at Acox1 acyl-Coenzyme A oxidase 1, palmitoyl -1.39 -1.25
1427229_at Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A reductase -1.34 -1.47
1418654_at Hao3 hydroxyacid oxidase (glycolate oxidase) 3 -1.27 -1.3
1424493_s_at Ugt3a1 UDP glycosyltransferases 3 family, polypeptide A1 -1.25 -1.29
1416933_at Por P450 (cytochrome) oxidoreductase -1.23 -1.41
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