Contemporaneous Aggregation of GARCH Models and Evaluation of the Aggregation Bias
Détails
ID Serval
serval:BIB_27EAE14A781A
Type
Rapport: document publié par une institution, habituellement élément d'une série.
Sous-type
Working paper: document de travail dans lequel l'auteur présente les résultats de ses travaux de recherche. Les working papers ont pour but de stimuler les discussions scientifiques avec les milieux intéressés et servent de base pour la publication d'articles dans des revues spécialisées.
Collection
Publications
Institution
Titre
Contemporaneous Aggregation of GARCH Models and Evaluation of the Aggregation Bias
Détails de l'institution
Swiss Finance Institute
Adresse
Switzerland
Date de publication
2008
Numéro
08-06
Genre
Research Paper
Langue
anglais
Résumé
It is well known that the class of strong (Generalized) AutoRegressive Conditional Heteroskedasticity (or GARCH) processes is not closed under contemporaneous aggregation. This paper provides the dynamics followed by the aggregate process when the individual persistence parameters are drawn from the same (unknown) distribution. Assuming heterogeneity across individual parameters, the dynamics of the aggregate volatility involves additional lags that reflect the moments of the distribution of the individual persistence parameters. Then the paper describes a consistent estimator of the aggregate process, based on nonlinear least squares. A simulation study reveals that this aggregation-corrected estimator performs very well under realistic sets of parameters. Last, this approach is extended to a multi-sector context. This extension is used to evaluate the importance of the aggregation bias. Using size and book-to-market portfolios, I show that the investor is willing to pay one fifth of her expected return to switch from the standard GARCH(1,1) estimator to the aggregation-corrected estimator.
Mots-clé
Contemporaneous aggregation, Heterogeneity, Volatility, GARCH model
Création de la notice
24/02/2009 22:33
Dernière modification de la notice
20/08/2019 13:07