Seizure prediction with bipolar spectral power features using Adaboost and SVM classifiers.
Détails
ID Serval
serval:BIB_2551D4BD84CF
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Sous-type
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Collection
Publications
Institution
Titre
Seizure prediction with bipolar spectral power features using Adaboost and SVM classifiers.
Titre de la conférence
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
ISSN
2694-0604 (Electronic)
ISSN-L
2375-7477
Statut éditorial
Publié
Date de publication
2013
Peer-reviewed
Oui
Volume
2013
Pages
6305-6308
Langue
anglais
Résumé
This paper presents the results of our study on finding a lower complexity and yet a robust seizure prediction method using intracranial electroencephalogram (iEEG) recordings. We compare two classifiers: a low-complexity Adaboost and the more complex support vector machine (SVM). Adaboost is a linear classier using decision stumps, and SVM uses a nonlinear Gaussian kernel. Bipolar and/or time-differential spectral power features of different sub-bands are extracted from the iEEG signal. Adaboost is used to simultaneously classify as well as rank the features. Eliminating the low discriminating features reduces computational complexity and power consumption. The top features selected by Adaboost were also used as a feature set for SVM classification. The outputs of classifiers are regularized by applying a moving-average window and a threshold is used to generate alarms. The proposed methods were applied on 8 invasive recordings selected from the EPILEPSIAE database, the European database of EEG seizure recordings. Doublecross validation is used by separating data sets for training and optimization from testing. The key conclusion is that Adaboost performs slightly better than SVM using a reduced feature set on average with significantly less complexity resulting in a sensitivity of 77.1% (27 of 35 seizures in 873 h recordings) and a false alarm rate of 0.18 per hour.
Mots-clé
Adult, Algorithms, Databases, Factual, Electroencephalography, Female, Humans, Male, Predictive Value of Tests, Reproducibility of Results, Seizures/diagnosis, Sensitivity and Specificity, Support Vector Machine
Pubmed
Web of science
Création de la notice
06/07/2021 14:28
Dernière modification de la notice
04/05/2024 6:07