Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases
Détails
ID Serval
serval:BIB_1BFEF7DDACD8
Type
Article: article d'un périodique ou d'un magazine.
Sous-type
Synthèse (review): revue aussi complète que possible des connaissances sur un sujet, rédigée à partir de l'analyse exhaustive des travaux publiés.
Collection
Publications
Institution
Titre
Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases
Périodique
Reviews in the Neurosciences
ISSN
0334-1763 (Print)
Statut éditorial
Publié
Date de publication
2005
Volume
16
Numéro
1
Pages
57-67
Notes
Journal Article
Review
Review
Résumé
The c-Jun N-terminal kinases (JNKs) are members of the family of mitogen activated protein kinases (MAPKs). While the functions of the JNKs under physiological conditions are diverse and not completely understood, there is increasing evidence that JNKs are potent effectors of apoptosis in both the brain and the mammalian inner ear following a variety of injuries. The activation of the inducible transcription factor c-Jun by N-terminal phosphorylation is a central event in JNK-mediated neural and inner ear hair cell death. A cell permeable peptide designed specifically to inhibit JNK signaling has proven successful in in vivo models of both neuronal degeneration following cerebral ischemia and auditory hair cell degeneration following exposure to either acoustic trauma or a toxic level of an aminoglycoside antibiotic. Here we discuss the evidence supporting the application of JNK inhibitors to prevent cellular degeneration in several central nervous system (CNS) and peripheral nervous system (PNS) diseases with an emphasis on traumatic ischemic damage to the CNS and acquired deafness in the PNS receptors.
Mots-clé
Animals
Brain Ischemia/drug therapy/enzymology/physiopathology
Deafness/drug therapy/enzymology/physiopathology
Hair Cells/drug effects/enzymology/physiopathology
Humans
JNK Mitogen-Activated Protein Kinases/drug effects/*metabolism
Nerve Degeneration/*drug therapy/*enzymology/prevention & control
Nervous System Diseases/*drug therapy/*enzymology/physiopathology
Neuroprotective Agents/chemistry/*pharmacology
Neurotoxicity Syndromes/drug therapy/enzymology/physiopathology
Signal Transduction/drug effects/physiology
Pubmed
Web of science
Création de la notice
24/01/2008 15:20
Dernière modification de la notice
20/08/2019 13:52