Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T.
Détails
Demande d'une copie Sous embargo indéterminé.
Accès restreint UNIL
Etat: Public
Version: Final published version
Licence: Tous droits réservés
Accès restreint UNIL
Etat: Public
Version: Final published version
Licence: Tous droits réservés
ID Serval
serval:BIB_0D315EB8ED5C
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T.
Périodique
Magnetic resonance in medicine
ISSN
1522-2594 (Electronic)
ISSN-L
0740-3194
Statut éditorial
Publié
Date de publication
09/2020
Peer-reviewed
Oui
Volume
84
Numéro
3
Pages
1218-1234
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Résumé
The thalamus is an important brain structure and neurosurgical target, but its constituting nuclei are challenging to image non-invasively. Recently, susceptibility-weighted imaging (SWI) at ultra-high field has shown promising capabilities for thalamic nuclei mapping. In this work, several methodological improvements were explored to enhance SWI quality and contrast, and specifically its ability for thalamic imaging.
High-resolution SWI was performed at 7T in healthy participants, and the following techniques were applied: (a) monitoring and retrospective correction of head motion and B <sub>0</sub> perturbations using integrated MR navigators, (b) segmentation and removal of venous vessels on the SWI data using vessel enhancement filtering, and (c) contrast enhancement by tuning the parameters of the SWI phase-magnitude combination. The resulting improvements were evaluated with quantitative metrics of image quality, and by comparison to anatomo-histological thalamic atlases.
Even with sub-millimeter motion and natural breathing, motion and field correction produced clear improvements in both magnitude and phase data quality (76% and 41%, respectively). The improvements were stronger in cases of larger motion/field deviations, mitigating the dependence of image quality on subject performance. Optimizing the SWI phase-magnitude combination yielded substantial improvements in image contrast, particularly in the thalamus, well beyond previously reported SWI results. The atlas comparisons provided compelling evidence of anatomical correspondence between SWI features and several thalamic nuclei, for example, the ventral intermediate nucleus. Vein detection performed favorably inside the thalamus, and vein removal further improved visualization.
Altogether, the proposed developments substantially improve high-resolution SWI, particularly for thalamic nuclei imaging.
High-resolution SWI was performed at 7T in healthy participants, and the following techniques were applied: (a) monitoring and retrospective correction of head motion and B <sub>0</sub> perturbations using integrated MR navigators, (b) segmentation and removal of venous vessels on the SWI data using vessel enhancement filtering, and (c) contrast enhancement by tuning the parameters of the SWI phase-magnitude combination. The resulting improvements were evaluated with quantitative metrics of image quality, and by comparison to anatomo-histological thalamic atlases.
Even with sub-millimeter motion and natural breathing, motion and field correction produced clear improvements in both magnitude and phase data quality (76% and 41%, respectively). The improvements were stronger in cases of larger motion/field deviations, mitigating the dependence of image quality on subject performance. Optimizing the SWI phase-magnitude combination yielded substantial improvements in image contrast, particularly in the thalamus, well beyond previously reported SWI results. The atlas comparisons provided compelling evidence of anatomical correspondence between SWI features and several thalamic nuclei, for example, the ventral intermediate nucleus. Vein detection performed favorably inside the thalamus, and vein removal further improved visualization.
Altogether, the proposed developments substantially improve high-resolution SWI, particularly for thalamic nuclei imaging.
Mots-clé
field tracking, motion correction, susceptibility-weighted imaging, thalamic nuclei, vein segmentation
Pubmed
Web of science
Financement(s)
Université de Lausanne / CRND-31188
Création de la notice
17/02/2020 16:56
Dernière modification de la notice
16/05/2023 5:55