Microfluidic-based immunohistochemistry for breast cancer diagnosis: a comparative clinical study.

Details

Ressource 1Download: 31267199_pp_cover.pdf (2406.08 [Ko])
State: Public
Version: Author's accepted manuscript
License: Not specified
Serval ID
serval:BIB_C54870217CF0
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Microfluidic-based immunohistochemistry for breast cancer diagnosis: a comparative clinical study.
Journal
Virchows Archiv
Author(s)
Aimi F., Procopio M.G., Alvarez Flores M.T., Brouland J.P., Piazzon N., Brajkovic S., Dupouy D.G., Gijs M., de Leval L.
ISSN
1432-2307 (Electronic)
ISSN-L
0945-6317
Publication state
Published
Issued date
09/2019
Peer-reviewed
Oui
Volume
475
Number
3
Pages
313-323
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
Breast cancer is a highly heterogeneous disease. The efficacy of tailored therapeutic strategies relies on the precise detection of diagnostic biomarkers by immunohistochemistry (IHC). Therefore, considering the increasing incidence of breast cancer cases, a concomitantly time-efficient and accurate diagnosis is clinically highly relevant. Microfluidics is a promising innovative technology in the field of tissue diagnostic, enabling for rapid, reliable, and automated immunostaining. We previously reported the microfluidic-based HER2 (human epidermal growth factor receptor 2) detection in breast carcinomas to greatly correlate with the HER2 gene amplification level. Here, we aimed to develop a panel of microfluidic-based IHC protocols for prognostic and therapeutic markers routinely assessed for breast cancer diagnosis, namely HER2, estrogen/progesterone receptor (ER/PR), and Ki67 proliferation factor. The microfluidic IHC protocol for each marker was optimized to reach high staining quality comparable to the standard procedure, while concomitantly shortening the staining time to 16 min-excluding deparaffinization and antigen retrieval step-with a turnaround time reduction up to 7 folds. Comparison of the diagnostic score on 50 formaldehyde-fixed paraffin-embedded breast tumor resections by microfluidic versus standard staining showed high concordance (overall agreement: HER2 94%, ER 95.9%, PR 93.6%, Ki67 93.7%) and strong correlation (ρ coefficient: ER 0.89, PR 0.88, Ki67 0.87; p < 0.0001) for all the analyzed markers. Importantly, HER2 genetic reflex test for all discordant cases confirmed the scores obtained by the microfluidic technique. Overall, the microfluidic-based IHC represents a clinically validated equivalent approach to the standard chromogenic staining for rapid, accurate, and automated breast cancer diagnosis.
Keywords
Breast cancer, Immunohistochemistry, Microfluidic tissue processor
Pubmed
Create date
18/07/2019 17:13
Last modification date
04/09/2019 6:10
Usage data