Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers.

Details

Ressource 1Download: 38316856_BIB_236BA5FEE658.pdf (2488.56 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_236BA5FEE658
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers.
Journal
Scientific reports
Author(s)
Ingolfsson T.M., Benatti S., Wang X., Bernini A., Ducouret P., Ryvlin P., Beniczky S., Benini L., Cossettini A.
ISSN
2045-2322 (Electronic)
ISSN-L
2045-2322
Publication state
Published
Issued date
05/02/2024
Peer-reviewed
Oui
Volume
14
Number
1
Pages
2980
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance and cumbersome EEG caps. Such a setting is not compatible with long-term tracking under typical living conditions, thereby motivating the development of unobtrusive wearable solutions. However, wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, and lower signal-to-noise ratio. Moreover, artifacts presenting morphological similarities to seizures act as major noise sources and can be misinterpreted as seizures. This paper presents a combined seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of [Formula: see text] for 182 seizures from the CHB-MIT dataset and [Formula: see text] for 25 seizures from the private dataset with no preliminary artifact detection or removal. The artifact detector achieves a state-of-the-art accuracy of [Formula: see text] (on the TUH-EEG Artifact Corpus dataset). Integrating artifact and seizure detection significantly reduces false alarms-up to [Formula: see text] compared to standalone seizure detection. Optimized for a Parallel Ultra-Low Power platform, these algorithms enable extended monitoring with a battery lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in wearable epilepsy monitoring devices to limit the number of false positives.
Keywords
Humans, Algorithms, Artifacts, Electroencephalography, Epilepsy/diagnosis, Seizures/diagnosis, Wearable Electronic Devices
Pubmed
Web of science
Open Access
Yes
Create date
09/02/2024 13:06
Last modification date
20/08/2024 6:23
Usage data