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Minimizing artifact‑induced 
false‑alarms for seizure detection 
in wearable EEG devices 
with gradient‑boosted tree 
classifiers
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Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical 
practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance 
and cumbersome EEG caps. Such a setting is not compatible with long‑term tracking under typical 
living conditions, thereby motivating the development of unobtrusive wearable solutions. However, 
wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, 
and lower signal‑to‑noise ratio. Moreover, artifacts presenting morphological similarities to seizures 
act as major noise sources and can be misinterpreted as seizures. This paper presents a combined 
seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted 
Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of 65.27% 
for 182 seizures from the CHB‑MIT dataset and 57.26% for 25 seizures from the private dataset with 
no preliminary artifact detection or removal. The artifact detector achieves a state‑of‑the‑art accuracy 
of 93.95% (on the TUH‑EEG Artifact Corpus dataset). Integrating artifact and seizure detection 
significantly reduces false alarms—up to 96% compared to standalone seizure detection. Optimized 
for a Parallel Ultra‑Low Power platform, these algorithms enable extended monitoring with a battery 
lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in 
wearable epilepsy monitoring devices to limit the number of false positives.

Epilepsy is a common neurological disorder that affects more than 50 million people  worldwide1 and is char-
acterized by the recurrence of seizures which temporarily compromise the function of the affected people’s 
brain. About one-third of persons with epilepsy (PWE) continue to suffer seizures despite receiving appropriate 
antiseizure medications. In most instances, these persons will lose awareness during their seizures, putting them 
at risk of accidents, traumatism, and even death. Furthermore, PWE will often fail to remember the occurrence 
of their seizures and will thus be unable to inform their physician to adjust therapy appropriately. These issues 
have led to an increasing interest in developing seizure detection solutions with two goals: (1) sending an alarm 
to family members or caregivers to protect PWE from the immediate risks entailed by seizures, (2) providing a 
reliable seizure count that they can share with their physicians to optimize treatment.

Several methods are being developed for this purpose; most currently rely on biosignals captured at the wrist 
or arm, including surface electromyography, 3D-accelerometry, electrodermal activity, and photoplethysmog-
raphy. While several methods proved effective in detecting one subtype of seizures, i.e., generalized tonic-clonic 
seizures (GTCS), they fall short of detecting most other seizure types. For this reason, other methods attempt to 
detect seizures using the classic neurobiological hallmark of epileptic seizures, Electroencephalography (EEG). 
Indeed, by definition, a seizure reflects an abnormal EEG signal called an epileptic discharge. Diagnostic methods 
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to perform short-term EEG recordings (i.e., from 20 min to several days) are very well established but not adapted 
to the purpose of chronic recordings over months or years to achieve the above-described objectives.

Indeed, conventional EEG systems are bulky and uncomfortable, causing patients to perceive stigmatization. 
Furthermore, the long wires used to connect multiple electrodes are a significant cause of motion artifacts on 
the EEG  traces2. Consequently, wearable solutions are paramount for long-term continuous EEG  monitoring3. 
In this context, the need for wearables-based long-term seizure detection requires empowering such solutions 
with seizure-detecting capabilities via Machine Learning (ML), to enable prompt interventions from caregivers 
during or immediately after the seizures, reducing their impact and providing more reliable information to the 
physicians (to optimize anti-seizure therapies)4. However, the development of EEG-based seizure detectors for 
wearable Internet of Things (IoT) devices is faced by multiple challenges, which we address in this paper.

First, most of the existing Artificial Intelligence (AI) models rely on a large number of  electrodes5 (ideally all 
electrodes of standard EEG-caps): unobtrusive wearable solutions are limited to a lower number of channels, and 
they face the challenge of maintaining the same levels of performance as for full-channel systems. In addition, 
the impact of false alarms is much greater in long-term monitoring settings (since it relates to the willingness of 
patients to use the devices), ultimately resulting in the need to maximize specificity (also at the price of a lower 
sensitivity) as the main performance  metric6.

Second, artifacts play a critical role in wearable IoT devices. While data acquired in epilepsy monitoring 
units (EMUs) usually are inspected by experts and feature a low amount of artifacts (which can be labeled)7, 
wearable EEG systems produce signals with low signal-to-noise  ratio8 that are more affected by artifacts than full 
EEG-caps or implanted solutions. If not accounted for, artifacts can significantly increase the number of false 
 alarms9, possibly making a wearable seizure detector not usable in practical settings (low specificity). Therefore, 
automated seizure detection frameworks must be combined with artifact detection (and, possibly, filtering).

Last but not least, wearable IoT devices must also fulfill the following requirements: (a) small and comfort-
able form factor; (b) long-battery life; (c) low latency. To ensure this, smart edge computing based on low-power 
microcontrollers (MCUs) has recently been introduced, proving its effectiveness in providing long-term opera-
tion and executing AI  models10. However, the challenge is that the AI algorithms need to fit the computational 
capabilities of wearable devices. Consequently, the choice of models has to be narrowed down, so that they can 
be implemented on a low-power MCUs.

Seizure detection has received much interest in the past decades, and recently the usage of Deep Learning 
(DL) methods has increased considerably. The main metrics of interest are sensitivity (i.e., the ability to detect 
seizures) and false alarm rates (false positives, FP). The latter is essential since it relates to the trust and willing-
ness of patients to use the devices (a maximum of one false alarm per day is typically considered acceptable)6. It 
is also worth noticing that not all papers report false alarm rates and report only specificity. Unfortunately a high 
specificity does not automatically translate to an excellent false alarm rate: for example, a specificity of 99% for 
2s prediction windows results in 18 FP/h. In the following, we review the performance of published works that 
are compatible with deployment on wearable IoT devices, focusing on the false alarms and sensitivity metrics. 
False alarm rates (FP/h) are calculated as 3600W × (1− Sp) , where W is the observation window (in seconds) and 
Sp is the reported specificity.

Sayeed et al.11 and Olokodana et al.12 present representative examples of seizure detection frameworks based 
on statistical feature extraction. However, both papers rely on an intracranial setup that requires invasive brain 
surgery and is therefore not applicable to wearable surface EEG systems. Samiee et al.13 proposed a novel feature 
extraction technique called rational discrete short-time Fourier Transform. However, their work also bases the 
experiments on intracranial data, and despite achieving good sensitivity ( 97% ), they have a false positive alarm 
rate of around 65 FP/h. In the study by Wang et al.14, the authors use a wavelet function decomposition and a 
directed transfer function to extract features, which are fed to a support vector machine classifier. Even though 
they achieve an excellent specificity of 99.5% , when considering their prediction window of 2s, the false alarm 
rate results in 9 FP/h. Fan et al.15 achieved very high sensitivity ( 98.48% ) and low latency results by means of tem-
poral synchronization patterns (quantified using spectral graph theoretic features). However, their best-resulting 
model still features a very high false alarm rate of 21.4% (over 270 FP/h considering their 1s prediction window).

Improvements of the false alarm rate are instead provided by a combination of spectral, spatial and temporal 
features and an SVM classifier  of7, where a sensitivity of 96% and a false alarm rate of 0.08 FP/h was achieved. 
However, the proposed approach is not robust to the reduction of the number of  channels16, thereby becoming 
unfeasible for a wearable edge implementation.

Gomez et al.17 utilize a fully connected convolutional neural architecture combined with a “First Seizure 
Model” (to achieve better performance on hard-performing subjects). Despite the low sensitivity (around 60%), 
they achieve a false alarm rate of 3.6 FP/h (relatively low compared to other works but still too high for practi-
cal usage). An alternative inspiring approach is reported by Baghersalimi et al.18, who propose a many-to-one 
signals knowledge distillation aiming at low-power applications. Their best-performing multi-modal model has 
a specificity of 95.66% (however resulting in 52 FP/h, when looking at their prediction interval of 3s).

In summary, while there is rich literature about EEG-based seizure detection, few works concentrate on 
low-channel-count scenarios and even fewer demonstrate low electrode count coupled with low false alarm 
 rate19,20. Hence, there is a strong need for seizure detectors based on a small number of channels capable of providing 
nearly-zero false alarms, with high sensitivity, and computational requirements that would fit the limited resources 
available on a wearable device.

As stated before, a major problem in seizure detection is represented by EEG artifacts, some of which are 
often mistaken for seizures due to their morphological similarity in amplitude and  frequency21. Main artifact 
sources are specifically ocular, cardiac, and (most frequently) muscular  artifacts22. Many artifact detection/
rejection algorithms have been proposed, relying on both supervised and unsupervised methods. The work of 
Khatwani et al.23 is a relevant example of artifact detection on an in-house dataset, where an energy-efficient 
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convolutional neural network (CNN) processes raw EEG signals without the need for feature extraction and 
achieves around 74% accuracy.

Beyond private datasets, the Temple University Artifact Corpus (TUAR)21 is the most used reference for EEG 
artifacts analyses. Usage examples include the DL frameworks of Qendro et al.24, achieving a 0.838 F1 score, 
the DL model of Kim et al.25, which classifies artifacts with a 75% accuracy, and the convolutional-transformer 
hybrid network of Peh et al.26, achieving 0.876 Area Under the Receiver Operator Characteristic (AUC) score 
(by using a belief matching loss function at the cost of high computational costs).

Artifacts in EEG signals can also be smoothed with Blind Source Separation (BSS)27, which is the task of 
separating signal sources from a set of mixed signals. This is an inherently difficult problem and requires multiple 
assumptions and a recent  study28 even suggests this should not be done. An example of a BSS technique is the 
Independent Component Analysis (ICA), which is a well-established approach for separating brain contributions 
and non-brain contributions from EEG signals.

ICA is a linear decomposition  technique29 that relies on the fact that EEG signals are stationary, statistically 
independent, and originated from a non-Gaussian distribution. In ICA, Independent Components (ICs) are 
extracted from EEG signals and inspected (manually or automatically) to eliminate the noisy components. By 
reconstructing the EEG signal from the selected subset of ICs, the new EEG signal does not contain any artifacts. 
While ICA has been used successfully in the past to decompose multi-channel EEG recordings and clean artifacts 
from them, using ICA for wearable real-time usage faces serious challenges.

Firstly, ICA is an unsupervised algorithm that does not provide information on what the ICs represent in the 
original data. Consequently, manual inspection of all the ICs is needed, or a separate classifier has to be devel-
oped. Furthermore, ICA requires a large amount of data. As a rule of  thumb30, the amount of data needed to get 
a reliable ICA decomposition is around kn2 where n is the number of channels. Usually, k >> 20 is required, 
or alternatively, a wider dataset is needed. However, online seizure detection methods typically rely on a few 
epochs, thereby ICA is inapplicable.

Finally, multi-channel EEG is required for ICA to decompose brain contributions and non-brain contribu-
tions. In fact, the signals in the sensors’ domain are required to be at least as large as the number of sources to 
be extracted. However, wearables feature a low channel count. As an example, decomposition on a 3-channel 
setup can at most extract 3 separate sources, and the separation of artifact (non-brain-components) and brain-
component is not guaranteed to be clear enough. Approaches to exploit ICA with low channel count include the 
work of Rejer et al.31, where artificial signals are extracted from the original signals using a zero-phase filtering 
operation and are later separated in ICs. However, the continuous generation of artificial signals followed by a 
classifier is cumbersome for a wearable since it requires significant storage, power budget, and computation time.

While ICA is primarily used as an offline method, Artifact Subspace Reconstruction (ASR)32 is an artifact 
filtering technique that was designed for online operation. Similar to Principal Component Analysis (PCA), ASR 
works in the principal component space, compares short segments of EEG data to a statistical model (learned 
from clean calibration data), and then can filter out artifacts. ASR has been shown to be better than ICA at 
removing  artifacts33 and Tsai et al.34 show that the use of an ASR technique improved the performance by up to 
8.6% on three distinct Brain–Computer Interface (BCI) tasks. The usage of ASR does require the calibration of 
user-defined parameters, also a multi-channel EEG system is usually  recommended35. Still, recent studies such as 
by Cataldo et al.36 have shown that it can be effective even with a low channel count. Nevertheless, the continuous 
filtering of data is power-hungry for a wearable device, and as explored by Blum et al.37, a considerable amount 
of time and memory is needed. Therefore, also in the context of ASR, an artifact detector appears as necessary 
(to determine when filtering is necessary).

First attempts in combining seizure and artifact detection are reported by Islam et al.38, where artifacts and 
seizures are separated by means of a stationary wavelet transform, and in a later  paper39, where mobility arti-
facts are removed from EEG data via ICA. However, both papers operate on offline data, with no online imple-
mentation. Additionally, the authors faced the challenge of the scarcity of publicly accessible datasets that are 
annotated with labeled seizures and artifacts, and thereby resorted to the combination of multiple data sources 
or the complete synthesis of data to overcome this issue. In this work we operate in a similar way and combine 
multiple EEG datasets for developing a combined artifacts and seizure detection.

Within this context, we present two frameworks, based upon boosted  trees40, to accurately detect seizures 
and EEG artifacts. Furthermore, we demonstrate the importance of combining these two frameworks in a single 
seizure and artifact detection signal chain, and we implement it on a PULP-based edge device (GAP9) suitable for 
wearable unobtrusive epilepsy detection with a reduced electrode montage. Figure 1a summarizes the workflow 
explored and implemented in this paper. We release open source code under https:// github. com/ pulp- bio/ Artif 
act- Seizu re. Our contributions are the following:

• We extend upon a previous seizure detection  framework41, further validating and improving the performance 
of the models by relying on Gradient Boosted Trees (XGBoost), also accounting for a larger number of 
patients (on the CHB-MIT dataset) and including analyses on a novel private dataset. Results demonstrate 
an average sensitivity of 65.27% and 57.26% for the two datasets, respectively, with a majority of patients 
(approximately 60% ) experiencing no false positives.

• We extend upon a previous artifact detection  framework42, improving its performance by relying on pruned 
Gradient Boosted Trees and achieving a state-of-the-art (SoA) accuracy score of 93.95% and 0.838 F1 score 
on an artifacts dataset.

• We propose a method for combining these two frameworks in the absence of datasets labeled for both sei-
zures and artifacts. By incorporating an artifact detection model prior to the seizure detection, we observed 
a substantial reduction in false positives per hour (FP/h), from 22.9 FP/h to 1.0 FP/h. Hence, the artifact 

https://github.com/pulp-bio/Artifact-Seizure
https://github.com/pulp-bio/Artifact-Seizure
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detector filters out 96% of the false alarms (or, conversely, the absence of the artifact detector results in 22.5× 
more false alarms).

• We implement the proposed framework on the PULP-based GAP9 processor, demonstrating an average 
power envelope of 26.1 mW and energy consumption as low as 7.93 µ J per window feature extraction and 
classification, which leads to a battery lifetime of 300 h, very well suited for long-term monitoring in normal 
life conditions.

Methods
Seizure detection methodology
In our previous  work41, we conducted an analysis on a subset of nine patients from the popular CHB-MIT 
dataset from the Children’s Hospital of Boston and  MIT43. The dataset comprises data acquired at 256 samples 
per second at a 16 bit resolution, following the international 10–20 system of EEG electrode position, on 23 
patients aged between 1.5 and 22 years old with intractable seizures. Our previous results on a limited number 
of patients demonstrated that utilizing a reduced electrode montage configuration did not degrade the efficacy of 
the proposed system, but improved outcomes for many patients. The findings  of41 also highlighted the significance 
of considering subject-specific models in addition to global models, and the AdaBoost model (a variant of the 
boosted tree algorithm), emerged as the most effective method in this examination.

Starting from these results, here we expand our analysis and use all available EEG seizure recordings from 
the CHB-MIT dataset. Furthermore, we expand our investigations by exploring the performance of Gradient 
Boosted Trees, specifically  XGBoost44, across all patients in the dataset while solely utilizing a reduced electrode 
montage or, more specifically, only the temporal electrodes (F7–T7, T7–P7, F8–T8, T8–P8) which is a convenient 
location to probe EEG signals with non-stigmatizing  wearables45.

Figure 1.  Proposed EEG artifact and seizure detection framework overview. (a) Provides a high-level 
view of the framework explored, encompassing the progression from raw EEG input, through artifact 
detection(rejection and smoothing of artifacts are also explored at this stage), to seizure detection, ending with 
the final output. (b) Details the artifact detection workflow: four temporal channels’ input data are preprocessed 
using Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT); model selection is optimized 
with Tree-based Pipeline Optimization Tool (TPOT), and the selected model is pruned via the Minimal 
Cost-Complexity Pruning (MCCP) algorithm to fit the target processor. (c) Illustrates the Seizure Detection 
Workflow: DWT is utilized for preprocessing input data from the same four temporal channels; XGBoost 
performs classification into normal EEG and seizures; the classifier’s output is post-processed and smoothed 
using a majority vote (the smoothing is based on the last two predictions of the model, to preserve causality). 
Finally, the framework is executed on a parallel ultra-low power (PULP) platform, enabling energy-efficient, 
real-time processing and classification.
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Finally, we also take into account that the CHB-MIT dataset presents some deviations from typical monitoring 
use cases (pediatric patients, gaps in the EEG traces, nearly zero artifacts). Thus, to further validate our approach, 
we also consider a novel private dataset curated by the Lausanne University Hospital (CHUV), which can be 
considered more representative of real-time monitoring scenarios in a practical clinical setup (adults, continuous 
monitoring, no gaps in the EEG data, broader inclusion criteria with patients at risk of presenting generalized 
tonic-clonic seizures recorded via video-EEG). The dataset derives from a project funded by the Swiss National 
Science Foundation (PEDESITE) and targets the development of novel wearable solutions for seizure detection. 
In the following, this dataset will be referred to as the PEDESITE dataset.

Figure 1c shows a sketch of the overall workflow of our investigations. In the following subsections we provide 
the details about the novel dataset and the methodology followed for the feature processing and classification 
tasks.

Dataset
We consider the well-known CHB-MIT dataset and the novel PEDESITE dataset for these analyses. The Pedesite 
study takes place during routine clinical evaluations at the in-hospital epilepsy monitoring unit where patients 
are investigated in order to record and characterize their epileptic seizures. Before the start of the monitoring, 
scalp-EEG electrodes are fixed to the patient’s scalp. Afterward, these electrodes are connected to an amplifier 
and then converted from analog to digital signals, which are then displayed in a software program, allowing 
healthcare professionals to monitor brain activity in real-time, coupled with the video, electrocardiogram, and 
pulse oximetry signals. Patient monitoring lasts from 2 consecutive days up to two weeks. All the recording 
periods are available. Approval for retrospective data analysis with a waiver of informed consent due to the 
retrospective nature of the study was obtained from the local Ethical Committee of the University of Lausanne 
(study nr 2021-01419). The study report conforms to the STROBE statement for the report of observational 
cohort studies. All the methods are in accordance with institutional guidelines and regulations. Table 1 presents 
a summary of the employed datasets as well as the training duration.

Table 1.  Summary of the employed EEG databases.

Patient No. seizures Recording duration Avg. seizure length (s) Training duration (h)

chb01 7 1d 17 h 33 min 63.14 34.63

chb02 3 1d 11 h 16 min 57.33 17.63

chb03 7 1d 14 h 2 min 57.43 31.69

chb04 4 6d 7 h 6 min 94.50 75.55

chb05 5 2d 15 h 12 min 111.60 47.40

chb06 10 2d 18 h 45 min 153.60 55.63

chb07 3 2d 19 h 5 min 108.30 33.54

chb08 5 1d 2 h 19 min 183.80 19.74

chb09 4 2d 19 h 52 min 69.00 33.93

chb10 7 2d 2 h 2 min 63.86 41.69

chb11 3 1d 9 h 45 min 268.70 16.88

chb12 40 21 h 41 min 36.63 19.27

chb13 12 11 h 0 min 44.00 9.43

chb14 8 1d 2 h 0 min 211.12 21.67

chb15 20 1d 15 h 1 min 99.60 36.02

chb16 10 17 h 1 min 8.62 13.61

chb17 3 20 h 1 min 97.67 10.01

chb18 6 1d 10 h 43 min 52.83 27.77

chb19 3 1d 4 h 53 min 78.67 14.44

chb20 8 1d 3 h 40 min 36.75 22.13

chb21 4 1d 8 h 23 min 49.75 21.58

chb22 3 1d 8 h 0 min 64.00 16.00

chb23 7 1d 2 h 36 min 60.57 13.3

Total 182 42d 1 h 59 min – 633.55

P1 3 4d 10 h 59 min 488 53.49

P2 7 3d 20 h 32 min 64.86 77.10

P3 5 2d 21 h 58 min 117.20 52.47

P4 3 3d 20 h 13 min 117.98 46.11

P5 4 3d 18 h 23 min 35.25 60.25

P6 3 5d 19 h 23 min 118.67 69.69

Total 25 23d 1 h 28 min – 359.11
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Feature pre-processing
Starting from the raw data of the considered datasets, as a first step we extract DWT energy  features46. DWT is 
widely used in preprocessing stages of machine learning algorithms, due to its ability to capture frequency and 
temporal features on a given signal. Unlike other signal transforms, such as Fourier transforms, DWT uses a 
series of filters called Mother Wavelets to decompose the input signal into a series of approximation and detail 
coefficients. These filters can be implemented as convolutions with pre-computed kernels, followed by down-
sampling by two. At each decomposition level, the time resolution is halved, and the frequency resolution is 
doubled, allowing for a more detailed representation of the original signal. This iterative process results in a series 
of approximation and detail coefficients that capture both the input signal’s low- and high-frequency components.

In bio-signal analysis, DWT effectively extracts features from physiological data due to its good trade-off 
between performance and signal-to-noise  ratio47. We use a 4-level DWT with the Haar mother  wavelet42 and 
temporal window lengths of 1 s, 2 s, 4 s and 8 s. We then calculate the energy of the detail coefficients at each level 
as a feature. When constructing the labeled data, we consider a window to be labeled as a seizure if the majority 
of samples (more than 50% ) in that window are a seizure.

Gradient boosted trees
We base the classification task on Gradient  Boosting40, which is a machine learning algorithm used to create 
predictive models. It builds a series of weak predictive models or weak learners, each slightly better than random 
guessing. These weak learners are combined to form a single robust model, which can make highly accurate 
predictions. XGBoost is a highly optimized and parallel version of the Gradient Boosted Tree algorithm which 
allows it to train the trees much faster. In this study, we use the XGBoost  algorithm44 for the seizure detection.

Post-processing of labels
Epileptic seizures are expected to last multiple seconds when they occur. As  in48, we use moving averages to 
smooth the predictions by applying a majority voting scheme. This operation has the effect of a low-pass filter, 
reducing false positives and eliminating fluctuations in the classifier  output41. However, using a moving aver-
age filter also increases the latency of predictions, depending on the window size and the number of windows 
that are averaged. In the presented analysis, we average three successive classifications, meaning that a latency 
delay of one window size is obtained (for each time point, one window backward and one window forward are 
considered to perform the smoothing).

Model validation
In the training phase of the models under validation, a weighted loss function is utilized to heavily penalize 
false alarms. The loss function incorporated different weights for misclassification of seizures and non-seizures, 
similar to the approach used  in49. We define the class weights as the inverse of the frequency of the occurrence 
of the two classes. In this configuration, the weight ratios are “balanced”.

Three methods for training and validating the models are also compared. Firstly, we closely look at a global 
model approach and a subject-specific approach. In the global model approach, we train a model on data from 
all the patients, while in the subject-specific, we train one model for each patient, with only data from that patient 
as training data. Additionally, for the subject-specific approach, we compare three approaches to validate the 
models. These approaches are based on EEG records (i.e., segmented portions of EEG data from an individual 
subject) and are as follows:

• Leave-One-Out Cross-Validation (LOOCV): we train on all records that have seizures in them except one 
and validate on the one left out.

• Walk-Forward Cross-Validation (WFCV)50: we keep a temporal coherency throughout the training and 
validation procedure. We never train on a record that happens after the validation record in time.

• Rolling Window Cross-Validation (RWCV)51: similar to the walk-forward approach except for the training 
records, since we do not train on records that happened very far behind the validation record.

While the first approach is commonly utilized in the literature for subject-specific analyses, the temporal depend-
encies inherent in the records motivate the exploration of the WFCV and RWCV.

Additionally, an extended analysis that accounts for the varying data volumes in each training loop of subject 
specific training is reported in the Supplementary Information.

Artifact analysis methodology
Since neither the CHB-MIT dataset nor the PEDESITE dataset provide artifact labels, to enable the development 
of an EEG artifact detector, we make use of a subset of the TUH EEG Corpus, specifically the TUAR. The dataset 
includes 310 annotated EEG files from 213 patients. The TUAR dataset comprises 22 channels that have been 
separately annotated with 13 distinct labels, namely 12 artifact labels and 1 non-artifact label. Five sampling 
frequencies are available (namely, 250 Hz, 256 Hz, 400 Hz, 512 Hz, and 1000 Hz).

To to extract features from the dataset we require a constant sampling frequency. To this end, we refer to the 
results  of42, where the sampling frequencies have been compared, and in the following, we focus only on the 
frequency that performed best in terms of accuracy (250 Hz). Thus, the dataset utilized in this paper comprises 
only the portion of the original dataset that was sampled at 250 Hz.
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In this study, three approaches to classification are considered: Binary Classification (BC), Multilabel Clas-
sification (MC), and Multiclass-Multioutput Classification (MMC). In the following, the variable �T represents 
a generic time window, and �(�T) denotes the label assigned to that window.

The BC approach labels a time window as an artifact �(�T) = 1 if there is an artifact present on any of the 
channels. Conversely, if no channel is initially labeled with an artifact in that window, it is labeled as standard 
background EEG �(�T) = 0.

In the MC approach, each channel is analyzed independently. Thus, an independent binary classification is 
performed on each channel. If the i-th channel was initially labeled with an artifact, the window is assigned a 
label of �i(�T) = 1 . Conversely, if the i-th channel does not have an artifact in the considered time window, it 
is labeled as normal background EEG: �i(�T) = 0.

The MMC approach expands upon the MC approach by discriminating between the specific cause of the 
artifact among the 12 possible alternatives for each label of each channel. If the i-th channel was initially labeled 
with the artifact type k (where k ∈ [1, 12] ), a label is assigned to that window for that channel as �i(�T) = k . 
Similarly, if the i-th channel does not have an artifact in the considered time window, it is labeled as normal 
background EEG: �i(�T) = 0 . Figure 1b shows a sketch of the workflow.

Feature extraction
Feature extraction is based on a combination of DWT and FFT. FFT is a computationally efficient method for 
calculating the frequency representation of time-domain signal values. However, the time information of the 
signal is lost after the transformation. FFT features have been shown to be effective for artifact  detection52, and 
we use FFT to calculate the energy of the high-frequency parts of the signal (frequencies above 80 Hz), with the 
intuition that high energy in the high-frequency parts of the signal should be considered as not originating from 
the brain. For the DWT, instead, we use the same method as described in the feature extraction paragraph for 
seizures here above. Even though the FFT and DWT features can be used alone and give good metrics, relying 
on a combination of FFT and DWT features yields the best results.

Automated model optimization
After the feature extraction based on FFT and DWT, we utilize the  TPOT53 for model selection and optimization. 
TPOT is an automated machine learning system that takes in features and labels and uses genetic programming 
to output the best model with cross-validated classification accuracy. By using TPOT, a comprehensive search 
is conducted over a wide range of machine learning models. Among the available AutoML  frameworks54–56, we 
chose to use TPOT by virtue of its rapid development time.

Performance metrics
We evaluate the models obtained via TPOT according to classification accuracy, i.e., the ratio between correctly 
classified trials and the total number of trials in the validation set. Since the TUAR dataset we use in this paper 
is imbalanced, we also consider the F1 score. For the MMC case, we report weighted F1 scores considering each 
class’s support.

Artifact and seizure combination methodology
Starting from the developed seizure and artifact detectors (described here above), we target combining these 
approaches into an integrated framework. However, a significant challenge is given by the lack of datasets labeled 
for both seizures and artifacts. To address this challenge, we propose to leverage statistical analysis to combine 
two distinct datasets. Moreover, to further validate the framework, we also verify the results on an alternative 
dataset (Temple University Event Corpus (TUEV)) labeled for artifacts and epileptic discharges.

Combination of two datasets
We explore three approaches to combine a seizure dataset (CHB-MIT) with an artifact dataset (TUAR). To 
make the section more readable, in the following, we will refer to the artifact detection model as Classifier A 
and to the seizure detection model as Classifier S. The three approaches are based on different normalization 
techniques and are as follows:

• raw data (no normalization): we train Classifier A on the artifact training data, and then we train Classifier 
S on the seizure training data.

• min–max normalization: we train Classifier A on the artifact training data that have been Min–Max scaled 
from 0 to 1, and then we train Classifier S on the seizure training data that has also been scaled from 0 to 1.

• z-score normalization: we train Classifier A on the artifact training data that have been standard scaled 
(removed the mean and scaled to unit variance), and then we train Classifier S on the seizure training data 
that also has been standard scaled.

Then we analyze the effect of passing data from the artifact dataset (A) through Classifier S and feeding data 
from the seizure dataset (S) through Classifier A. Such analysis aims at understanding:

• Are artifacts being classified as seizures? Is there a difference between the artifacts that are not detected by 
the artifact detector and those that are detected?

• Are seizures being classified as artifacts, therefore using an artifact detector results in lower sensitivity scores 
in the overall workflow?
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Epileptic discharges dataset
The main limitation of the analyses above is the mixing of heterogeneous datasets. In order to further validate the 
effectiveness of our proposed approach for combining artifact and seizure detection using a unique dataset (i.e., 
not mixing heterogeneous sources), we utilized another subset of the TUH EEG Corpus named the TUEV that 
contains annotations of EEG segments as one of six classes: (1) spike and sharp wave, (2) generalized periodic 
epileptiform discharges, (3) periodic lateralized epileptiform discharges, (4) eye movement, (5) artifact and (6) 
background EEG. The TUEV dataset is considered as a representative example of dataset with labels for artifacts 
and epileptic activity (interictal epileptic discharges), despite not containing epileptic seizures. Given the nature 
of the TUEV dataset, which labels epileptic discharges rather than seizures and only includes 1-s epochs, we 
extracted two separate sub-datasets, one consisting of background EEG and the combination of artifacts and eye 
movements, and the other consisting of background EEG and epileptic discharges. We train an artifact detector 
on the first dataset and a discharge detector on the second.

We conclude the analysis by repeating the process of passing data from the artifact dataset into the discharge 
detector and vice versa, to evaluate the potential impact of artifacts on epileptic discharges detection sensitiv-
ity. In this case, no additional scaling is required to obtain reliable results as the data originated from the same 
dataset. The same methodology could be applied for combined artifacts and seizure detection, if a single dataset 
with labels for both were available.

Embedded implementation methodology
GAP9 platform
In our previous  studies41,42, the seizure detection and artifact detection frameworks have been implemented 
and optimized on the BioWolf wearable ExG  device57, which features efficient on-board processing capability 
thanks to the PULP Mr. Wolf chip. In the present study, we focus on the optimization of the models for the 
GAP9 device which is a new commercialized generation of a more energy-efficient PULP  processor58. We target 
the new GAP9 processor since it offers the best trade-off energy efficiency and performance in the target power 
envelope of  milliwatts59 requested for wearable battery-operated devices. In fact, the GAP9 outperforms by at 
least one order of magnitude the conventional single-core low-power processors, such as ARM CORTEX M4 
 device10, with a comparable power budget.

We select this platform also by virtue of its parallel computation capabilities. In fact, GAP9 is a low-power 
parallel microcontroller with ten cores based on the RISC-V RV32IMF Instruction Set Architecture, with custom 
Xpulp extensions for digital signal  processing58. The ten cores of GAP9 are split into Fabric Controller (1) and 
Cluster Cores (9). GAP9 also features 128 kB L1 memory and 1.5 MB RAM, allowing relatively large models to 
be implemented. The cluster cores can run up to 370 MHz and share 4 Floating-Point Units, supporting opera-
tions in bfloat, FP16, FP32, and (for some instructions) also FP64.

Feature extraction implementation
The FFT implementation we developed on GAP9 utilizes the conjugate symmetry property of real-valued FFT 
to optimize computational efficiency. By implementing a complex FFT on half of the signal, the real-valued 
component is extracted from the output, resulting in a significant reduction in computation as compared to 
performing a full real-valued FFT on the entire signal. Additionally, the implementation uses a mixed-radix 
complex FFT approach to optimize processor utilization further. As for the DWT implementation, it iteratively 
passes through low-pass and high-pass filters. Given the focus on temporal channels, which are four in total, 
the computation of features is split such that four cores are allocated to computing the FFT, while another set 
of four cores are allocated to the DWT. This results in two cores per channel dedicated to feature extraction.

Artifact model pruning
The optimized artifact detection models generated by TPOT are mainly Extra Trees, i.e., an ensemble of Deci-
sion Trees (DTs)60. The obtained DTs can hardly fit on an embedded platform (they feature millions of threshold 
values). Therefore,  in42 we applied pruning on the DTs with a MCCP  algorithm61 in order to prune the DTs down 
such that the tree would fit on the L1/L2 memory of the targeted processor.

Additionally, since Gradient Boosted models (and in particular, XGBoost) proved to perform better than 
other tree-based models for seizure classification, we also explore their applicability. To this end, we use the 
TPOT-optimized hyperparameters and prune the trees for fitting the model on the L1/L2 memory of GAP9.

Tree ensemble implementation
The Gradient Boosting Classifier is a machine-learning technique that utilizes an ensemble of regression trees. 
Each tree in the ensemble is constructed by repeatedly splitting internal nodes based on specific features and 
threshold values. The implementation of this model is inspired by tree-based models presented in previous 
 research42.

To extract the necessary information for each tree, three arrays are utilized: the feature array, which indicates 
the feature to be compared to the threshold value; the index array, which specifies the next internal node or leaf 
node to be traversed; and the threshold array, which contains the threshold values used for comparisons. The 
feature array is represented with 8 bits, while the index array is represented with 16 bits and the threshold array 
is represented with 32 bits. Each node in the regression tree, therefore, requires 7 bytes of memory. These arrays 
are then stored on L2 memory and are processed by the GAP9 cluster cores.

To optimize computational efficiency, the number of trees in the ensemble is adapted to be divisible by the 
number of cores, and the output value is obtained by summing the individual predictions of each tree.
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Energy measurements
The GAP9 Evaluation Kit is utilized for the purpose of energy measurements. The evaluation kit is supplied with 
5 V and an onboard DC-DC converter generates the 1.8 V supply for the system-on-chip. The 0.65 V supply for 
the processor is generated through an on-chip DC-DC converter and is made accessible for power measure-
ments outside of the system-on-chip. The evaluation kit has dedicated power consumption test points for the 
0.65 V domain, through which the current and energy consumption are determined by calculating the voltage 
drop across a 0.5 � resistor that is connected to the processor’s supply input. This calculation is performed in 
accordance with Ohm’s Law. The power measurements are executed utilizing a Keysight InfiniiVision MSO-X 
2024A oscilloscope. Two passive probes are attached to the GAP9 test points with the aim of measuring the 
voltage drop, with their grounds connected together. A third probe is connected to a GPIO pin of the evaluation 
board for the purpose of synchronizing the measurements across distinct runs, with its ground connected to 
the board’s ground. The probes are bandwidth-limited to 20 MHz to minimize noise and ensure a clean signal. 
The performance numbers are calculated as the average of ten consecutive measurements. To compensate for 
the losses incurred by the on-chip DC-DC converter, which boasts a 90% efficiency, an additional 10% is added 
to the measured processor power numbers.

Results and discussion
Seizure analysis results
Table 2 compares our work to the existing literature on low channel count systems that aim at minimizing the 
false alarms. Our approach excels in FP/h, the most important metric for patient acceptance, while being com-
petitive in sensitivity. While further improvement is still needed to reach the needed level of acceptance for all 
patients (i.e., at most 1 FP/day), most subjects exhibit no false positives at all, as detailed in the following.

CHB-MIT dataset
Similarly as done  before41, we use a global model and optimize the window length to maximize sensitivity and 
specificity. Compared to  before41, where only a subset of patients was considered, we use the entire CHB-MIT 
dataset, making the classification more challenging. As previously  reported41, the utilization of larger temporal 
windows improves specificity and sensitivity. However, the achieved sensitivity is notably lower (65%) compared 
to the result achieved on a limited number of subjects (84.3%). These results further demonstrate the necessity 
for subject-specific models, and Table 3 summarizes the performance of three validation methods in a subject-
specific training and validation approach. The results (which are averaged across all patients) indicate that the 
LOOCV method yields the highest performance. Additionally, while a temporal window size of 4 s yielded the 
best results when averaging across all patients, the optimal window size also appeared to be patient-specific. 
When considering a variable window size (optimized on each patient) the performance scores further improved, 
achieving a sensitivity of 65% and an average false positive rate per hour of 0.65, with 16 out of 23 subjects result-
ing in zero false positives (see Fig. 2a).

PEDESITE dataset
A global model analysis is performed to confirm the understanding obtained from the analysis on the CHB-MIT 
dataset. The trends in the PEDESITE dataset in the global model approach were consistent with those in the 
CHB-MIT dataset. Specifically, the sensitivity and specificity of the model increased as the temporal window size 
increased. However, as illustrated in Fig. 3, the specificity is low and therefore resulting in a false positive rate 
per hour (FP/h) that is still too high for practical usage. The LOOCV method was then applied for validating 
subject-specific models on the PEDESITE dataset. We followed the same training procedures as reported for the 
CHB-MIT dataset. Table 3 presents the results of varying the temporal window size. The classification results, 
in terms of specificity, sensitivity, and false positive rate per hour (FP/h), appear to reach an optimal balance at 
a temporal window length of 4 s.

Figure 2a shows the sensitivity and FP/h rate for all considered individual patients. These results demonstrate 
that the proposed method could be used in a selected population where it provides high sensitivity or being the 
first step of a solution aimed at progressively learning from the individual patient. Figure 2b shows the distribu-
tion of the FP (top) and seizures (bottom) during the hours of the day. Most FP occur during wake, and the peak 
at 9:00 might correspond to bathroom time (shower, tooth brushing, etc.) which causes artifacts. FP during the 

Table 2.  Summary of scalp EEG-based seizure detection processing SoA for low channel count. Best values 
are in bold.

Work Dataset Length Window Subjects Channels Algorithm Sens (%) Spec (%) FP/h (%)
19 CHB-MIT 944 h 4 s 23 2 RF 96.6 92.2 –
62 Uni. Hospital Leuven 5284 h 2 s 54 4 SVM 63.4 – 0.9
63 CHB-MIT 464 h 8 s 8 4 Transformer 65.5 99.9 0.8
18 EPILEPSIAE 4603 h 3 s 29 3 CNN 87.0 95.7 52.0
20 CHB-MIT 944 h 1 s 23 5 RF 99.8 99.8 4.3

This work CHB-MIT 944 h 2 s–8 s 23 4 XGBoost 65.3 99.9 0.65

This work PEDESITE 591 h 2 s–8 s 6 4 XGBoost 57.3 99.9 0.51
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night (most annoying for patients) are minimal. Hence, the proposed solution appears as already feasible for 
real-life use during sleep in view of the very low FP/h rate (see Fig. 2).

Artifact analysis results
Figure 4a summarizes the artifact detection accuracy when using TPOT, demonstrating the feasibility of accurate 
artifact classification via minimal-montage EEG setups. The study focuses on the Temporal Central Parasagittal 
(TCP) average referenced  montage64, particularly on the four temporal channels (F7–T3, T3–T5, F8–T4, T4–T6) 
as specified by the 10–20 international system notation. Gradient Boosting appears as superior compared to Extra 
Trees, with an increased accuracy of 1.4% for L1-sized models.

Table 3.  Comparison of the three validation methods (LOOCV, WFCV, RWCV) on the whole CHB-MIT 
dataset, and the best method (LOOCV) on the whole PEDESITE dataset. The range of the 95% confidence 
interval is indicated below each number. Model:XGBoost, subject-specific. Best values are in bold.

LOOCV
(CHB-MIT)

WFCV
(CHB-MIT)

RWCV
(CHB-MIT)

LOOCV
(PEDESITE)

1 s Window Sens (%) 61.95 ± 10.67 58.57 ± 11.44 59.12 ± 11.01 53.25 ± 20.04

Spec (%) 99.87 ± 0.10 99.90 ± 0.07 99.89 ± 0.07 99.89 ± 0.10

FP/h 4.67 ± 3.76 3.60 ± 2.41 3.65 ± 2.52 4.08 ± 3.71

4 s Window Sens (%) 64.09 ± 10.88 60.70 ± 12.05 61.3 ± 11.05 57.73 ± 17.29

Spec (%) 99.91 ± 0.08 99.81 ± 0.19 99.81 ± 0.12 99.91 ± 0.07

FP/h 0.83 ± 0.78 1.73 ± 1.67 1.73 ± 1.08 0.80 ± 0.60

8 s Window Sens (%) 56.21 ± 12.49 54.10 ± 12.17 54.15 ± 12.30 56.80 ± 15.54

Spec (%) 99.69 ± 0.31 99.61 ± 0.30 99.62 ± 0.30 99.86 ± 0.14

FP/h 1.40 ± 1.41 1.74 ± 1.34 1.65 ± 1.35 0.62 ± 0.61

Variable window size Sens (%) 65.27 ± 9.59 61.25 ± 12.38 62.3 ± 11.00 57.26 ± 15.30

Spec (%) 99.90 ± 0.09 99.82 ± 0.18 99.82 ± 0.14 99.89 ± 0.10

FP/h 0.65 ± 0.58 1.09 ± 0.99 1.09 ± 0.63 0.51 ± 0.44
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Figure 2.  (a) Sensitivity and FP/h histogram of all considered patients. Labels “C” and “P” indicate patients of 
the CHB-MIT and PEDESITE datasets, respectively. Approximately 60% of patients exhibited zero false alarms. 
Top/bottom insets: probability density function (PDF) for the FP/h and sensitivity metrics. (b) Distribution of 
FP (left) and all/missed seizures (right) over hours of the day. Dataset: PEDESITE.
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We optimized Gradient Boosted Classifiers for use on the GAP9 processor and limit the memory usage to the 
available L2 memory of 1.5 MB. Initially, we limited the number of DTs in the ensemble to be a multiple of the 
number of cores on GAP9, to optimize parallelization on the 9-cores cluster. We then use the MCCP algorithm 
to eliminate the weakest links in the DTs. Figure 4b illustrates the outcome of this optimization process. We 
apply these limiting and pruning operations for all three cases (BC, MC, MMC) of the 250 Hz dataset. Further 
optimization is carried out using the MCCP algorithm, progressively increasing the complexity parameter that 
controls the degree of pruning. For the BC case, we reach a 93.3% accuracy when the model’s size matches the 
size of the L2 memory (1.5 MB), which corresponds to a decrease of only 0.65% from the optimal model identi-
fied by using TPOT. For the MC and MMC cases, we can prune the DTs more aggressively with minimal loss 
in accuracy, until it fits the size of the L1 memory. This minimal loss of accuracy with pruning confirms that 
embedded implementations of models with low memory usage can compete with state-of-the-art models.

Artifact and seizure combination results
Table 4 compares our work with the existing approaches, with a focus on the false positive improvement, i.e., how 
much the method improves the number of false positives, when accounting for artifacts in EEG data.

Artifact data fed to Seizure detector
We evaluate three methods for combining the seizure and artifact datasets. The first method did not involve any 
scaling and is expected to be less effective due to differences in data acquisition and signal amplitudes between 
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Figure 3.  Sensitivity and specificity plot for the global model approach on the PEDESITE dataset, illustrating 
the impact of the weighting ratio and the choice of window length (1, 2, or 4 s) on the performance of the 
model. As the weight ratio increases, the model’s sensitivity improves, but at the cost of decreased specificity. 
Conversely, as the window length increases, the model’s specificity improves, but at the cost of reduced 
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Figure 4.  Comparative analysis of artifact detection, in both sub-figures the shaded areas (brown and orange) 
represent the L1 and L2 memory capacity of GAP9. (a) Compares artifact detection accuracy of classifiers 
against model size, illustrating superior resistance and performance of a Gradient Boosting Classifier versus an 
Extra Trees Classifier optimized by TPOT. (b) Extends to Gradient Boosted Trees’ accuracy for three labeling 
methods (BC, MC, MMC) when implemented on the GAP9 processor. Star symbols denote TPOT-optimized 
models’ F1 scores (0.84, 0.60, 0.87 for BC, MC, MMC, respectively).
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the two datasets. Indeed, when normal EEG data (i.e., data without artifacts) is passed through the seizure 
detection model (Classifier S) it has a 50/50 chance of giving a false positive (i.e, classifying the normal EEG 
as a seizure) – an unacceptably low level of performance. Figure 5 showcases the improvement of including an 
artifact detector (Classifier A) before passing data through Classifier S. Indeed, the improvement ranged from 
58% to 96% with the standard scaling method having the best performance. Additionally, normal EEG data 
have only a small chance ( 0.04% ) of being incorrectly classified as seizures using this standard scaling method. 
These results quantitatively confirm that using an artifact detector before a seizure detection model allows to 
significantly reduce false alarms.

Seizure data fed to artifact detector
A question left unanswered is: does the artifact detector affect the sensitivity of the seizure detector? In other 
words, does the artifact detector prevent some seizures from being classified and detected? Figure 5 shows that 
when utilizing a standard scaling method for data pre-processing, approximately 20% seizure EEG data are clas-
sified as an artifact. Upon further analysis, we notice that the majority of these instances occur within the initial 
stages of the seizure, with the remaining artifact misclassifications being scattered temporally and not bound to 
impact the overall sensitivity of the system significantly. On an aggregate level across all subjects, an average of 
1.2 segments per seizure event is misclassified as artifacts, translating to an added latency of approximately 4.8 s 
in detection. Furthermore, roughly 13.8% of normal EEG (i.e., no seizures present) are classified as an artifact. 
Going by the results in the artifact detection, it is evident that the percentage of normal EEG data classified as 
artifacts is an overestimation, this most likely is a result of the difficulty of mixing two datasets. Therefore, we 
conclude that 20% of seizure data being classified as an artifact is also an overestimation and will be lower in a 
real-life example and, therefore, will affect sensitivity less. These findings suggest that, while the incorporation 
of artifact detection may result in an increase in latency in seizure prediction, it also makes the predictor less 
prone to EEG artifacts. In addition, we notice that seizure data (from the seizure dataset) misclassified as artifacts 
(by the artifact detector, trained with the artifact dataset) tend to: either group at the beginning of a seizure, 
or appear as scattered without exhibiting a specific pattern. Thanks to the smoothing approach of the seizure 
detector, the misclassifications that group at the beginning of seizure events result in an increased latency of 
detection, whereas scattered misclassifications get smoothed out without affecting sensitivity. Hence, sensitivity 
appears to be affected only by misclassifications falling outside of the two groups above, which account for less 
than 5% of the total seizure windows.

Epileptic discharges dataset
Similar trends are present for the TUEV dataset. Specifically, when passing artifact data into the artifact-dis-
charges combined framework, as the number of false positives reduces by 96% or more specifically from 6362 
to 290, this is an FP/h decrease of 69.0 FP/h → 3.1 FP/h. Additionally, when feeding discharge data into the 
artifact-discharges combined framework, approximately 30% of the discharges are initially classified as artifacts, 

Table 4.  Summary of artifact and seizure combination works. Best values are in bold.

Work Dataset Approach FP improvement (%)
38 CHB-MIT synthetic artifacts Cleaning 80
39 Freiburg EEG recorded artifacts Cleaning 49

This work CHB-MIT/PEDESITE TUH-EEG Detection 96

Figure 5.  Left: comparison of the difference in FP/h when passing artifact data through the seizure detector 
with and without an artifact detector in front. Right: the probability of classifying normal EEG and seizure EEG 
as an artifact when feeding seizure data into the artifact detector (combined datasets approach).
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which is consistent with the results obtained in the previous dataset combination analysis. However, due to the 
limited nature of the labeled data in the TUEV dataset, it is difficult to accurately determine the impact of this 
misclassification on the overall system sensitivity in a real-life scenario.

Embedded implementation results
We implement the whole framework (i.e., feature extraction, artifact detection and seizure detection) on GAP9. 
We chose a 4 s window for implementation as it showcased the best average performance in the seizure detection 
case. The power trace of the 4 s window can be seen in Fig. 6. The feature extraction takes roughly two times as 
long as the classification stage, and the total time for feature extraction and classification of both artifacts and 
seizures is remarkably performed in approximately 0.3 ms. Such a result is achieved while consuming a max 
peak power of 37.6 mW and an average power envelope of only 26.1 mW, with total energy consumption as low 
as 7.93 µ J. Assuming to integrate the proposed GAP9 implementation with an SoA commercial analog front 
end for biosignal acquisition (such as the Texas Instruments  ADS129857, which requires 0.75 mW per channel) 
and considering a battery of 300 mAh, the proposed approach ensures approximately 300 h of continuous data 
acquisition and classification at 4 s intervals, allowing for multi-day functionality.

Conclusion
A framework for seizure and artifact detection was developed and analyzed. The proposed seizure detection 
algorithm is based on Gradient Boosted Trees (XGBoost) and has been evaluated on the CHB-MIT dataset and 
on a private dataset. An average sensitivity of 65.27% and 57.26% was achieved on the two datasets, respectively, 
also guaranteeing less than 0.58 FP/h on average, with most patients ( 60% ) experiencing no false positives at all, 
thereby showcasing the potential for implementation in real life. An artifact detection framework has also been 
proposed and tested on the TUAR dataset, evaluating the performance of pruned Gradient Boosted Trees and 
Extra Trees Classifier and achieving 93.95% accuracy on the TUAR dataset. Finally, the combination of seizure 
and artifact detection has been explored. We demonstrated the importance of incorporating an artifact detector 
in conjunction with a seizure detection framework to reduce the number of false alarms. In fact, using the artifact 
detector allowed for a 96% reduction in FP/h.

The proposed framework also allows for multi-day continuous operation when executed on an ultra-low-
power device. In fact, by optimizing the implementation of the framework for a PULP platform, we demonstrated 
a power envelope of 26.1 mW and energy usage as low as 7.93 µ J per window feature extraction and classification.

Our algorithms were primarily developed for standard EEGs with traditional electrodes. As ambulatory EEG 
devices diversify, further validation will be needed for different devices. Moreover, while our current methodol-
ogy emphasizes artifact rejection for clarity in EEG-based detection, we cannot ignore the potential diagnostic 
value of certain artifacts, such as changes in Electrocardiogram (ECG) rate or muscle movements, in seizure 
identification. Future research should not only adapt our methods for wearable and alternative electrode arrays 
but also contemplate AI-driven approaches that harness these informative artifacts. Such strategies, which might 
bypass predefined feature dependencies, would benefit from expansive, well-annotated databases, highlighting 
an intriguing direction for subsequent investigations. In fact, artifacts generated by seizures might also provide 
different patterns compared to the physiological ones, hence offering additional opportunities for new charac-
terization strategies.

Another field of exploration for further research is integrating the proposed methods with other biosignal data 
modalities, such as wrist-worn wearable IoT devices. Such integration could enrich the detection framework and 
bolster its specificity, potentially further minimizing false positives (especially in the context of real-life activities, 
as compared to analyses of patients staying quiet in hospital  beds65).

Finally, approaches that allow minimizing the amount of data needed for subject-specific training also need 
to be explored. While our methodology aligns well with offline EEG analysis in home monitoring settings using 
traditional systems like the 10–20, its main intended purpose is to enable versatility for online analysis in wear-
able platforms, especially in real-time applications in diverse wearable EEG monitoring scenarios.

Data availability
The artifact data used in this paper is released by the Temple University Hospital through the following website 
at https:// isip. picon epress. com/ proje cts/ tuh_ eeg/. The seizure data used in this work is from a public database 
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Figure 6.  Power trace of the whole framework implemented on GAP9.
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(CHB-MIT scalp EEG database), which could be accessed and downloaded via https:// physi onet. org/ conte nt/ 
chbmit/ 1.0. 0/. The dataset generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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