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An die Musik 

Musik: Atem der Statuen.  Vielleicht: 

Stille der Bilder.  Du Sprache wo Sprachen 

enden.   Du Zeit 

die senkrecht steht auf der Richtung 

vergehender Herzen. 

 
Gefühle zu wem? O du der Gefühle 

Wandlung in was? —: in hörbare Landschaft. 

Du Fremde: Musik. Du uns entwachsener 

Herzraum. Innigstes unser, 

das, uns übersteigend, hinausdrängt, — 

heiliger Abschied: 

da uns das Innre umsteht 

als geübteste Ferne, als andre 

Seite der Luft: 

rein, 

riesig 

nicht mehr bewohnbar. 

 

Rainer Maria Rilke 
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Abstract 
Couple interactions have a long history of research in psychology and strong 

evidence highlighted correlations with many different bio-psycho-social outcomes, 

such as well-being and health. The current thesis proposes to investigate emotion 

and speech as two central aspects in couple interactions. Based on advanced 

technologies allowing acoustic features to be automatically extracted, relationships 

between acoustic characteristics and emotion have been thoroughly described. 

Vocal emotion recognition, a new area of research dedicated to the prediction of 

emotion based on speech signals, emerged a few decades ago and shows great 

promise. Emotion is a broadly used concept in psychology, but no common 

definition has yet been agreed on. In regard with a dimensional approach of 

emotion, arousal and valence are the most studied parameters. If speech signals 

have been reported to predict arousal with high accuracy, valence is known to show 

lower accuracy and incoherent results. A better understanding of the link between 

emotions and speech on a talk-turn level would allow current theories to be 

developed further and help improve actual and future interventions. Using a 

machine learning approach, the goal of the present study is to investigate that link 

with the emotional valence in focus. The results show low performances with the 

best accuracy rate for women self-reported emotional valence of 59%, but 

significantly different from chance. Among the four main different categories of 

acoustic features, voice quality has been assumed in the literature to be a better 

predictor for valence than pitch, but no significant differences have been found 

between acoustic features in this study. Propositions for future vocal emotion 

recognition research based on valence are introduced in the discussion. 
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Résumé 
Une longue histoire de recherche en psychologie sur les interactions de 

couple a mis en évidence de fortes corrélations en lien avec de nombreux aspects 

bio-psycho-sociaux, tels que le bien-être et la santé. La présente thèse propose de 

considérer les émotions et la dimension acoustique du discours comme deux aspects 

centraux des interactions de couple. En se basant sur des technologies récentes 

permettant d'extraire automatiquement des caractéristiques acoustiques, les 

relations entre ces les propriétés acoustiques du discours et les émotions ont déjà 

pu être décrites en détail dans la littérature. La reconnaissance vocale des émotions, 

un nouveau domaine de recherche dédié à la prédiction des émotions à partir de 

signaux vocaux, a émergé il y a quelques décennies et s'avère très prometteuse. Le 

concept d’émotion est largement utilisé en psychologie, mais aucune définition 

commune n'a encore été adoptée dans le monde scientifique. Dans le cadre d'une 

approche dimensionnelle des émotions, l'excitation (arousal en anglais) et la 

valence sont les paramètres les plus étudiés. Si les signaux vocaux permettent de 

prédire l'excitation avec une grande précision, la valence est connue pour présenter 

une précision moindre et des résultats incohérents. Une meilleure compréhension 

du lien entre les émotions et la parole permettrait de développer les théories en cours 

et d'améliorer les interventions actuelles et futures. En utilisant une approche basée 

sur l’apprentissage automatique (machine learning en anglais) l'objectif de la 

présente étude est d'examiner ce lien en se focalisant sur la valence émotionnelle. 

Les résultats montrent de faibles performances, mais néanmoins significativement 

différentes du hasard. Le meilleur taux de prédiction pour la valence émotionnelle 

auto-reportée est de 59 %. Parmi les quatre principales catégories des 

caractéristiques acoustiques, la qualité de la voix a été considérée dans la littérature 

comme un meilleur prédicteur de la valence que la hauteur de la voix, mais aucune 

différence significative n'a été trouvée dans cette étude. Des propositions 

concernant de futures recherches sur la reconnaissance des émotions vocales basées 

sur la valence sont abordées dans la discussion. 
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1. Intro 
The relationship between speech and emotion has a long history of research 

dating back from manuals about rhetoric in antic Greece and, after the contribution 

of Charles Darwin and other evolutionary theorists, got an increasing attention 

among scientists from the 19th century (Scherer, 2003). More recently, speech as an 

expression of emotion generated a considerable number of studies (Keltner et al., 

2019; Scherer & Bänzinger, 2004; Scherer, 2003; Juslin & Laukka, 2003; Mauss & 

Robinson, 2009) and, as anticipated by Scherer (1986), the emergence of an 

acoustic code for basic emotions is building up. On a dimensional approach of 

emotion, if the important role of arousal in vocal expression is well documented 

(Banse & Scherer, 1996), the role played by valence is still in debate and is 

collecting less-conclusive support (Goudbeek & Scherer, 2010; Belyk & Brown, 

2014; Liscombe, 2007). A better understanding of the link between emotions and 

speech would allow current theories to be developed further and help improve 

actual and future interventions. To better predict emotion based on speech could be 

of considerable value regarding the manifold applications of vocal emotion 

recognition in mental health. Using a predictive approach inspired by the new 

research area of vocal emotion recognition (for a review see Swain et al., 2018), the 

current paper, proposes to investigate this issue further. Therefore, this dissertation 

focuses on how accurate speech acoustic features can predict emotional valence 

during couple interactions using machine learning. 

 

1.1 Couple Interactions 
Couple interactions are a key concept in couple researches and are proven 

to have a strong impact on many bio-psycho-social outcomes for partners, as well-

being and health (Friedlander et al., 2019; Määttä & Uusiautti, 2013; Gottman & 

Notarius, 2000). A dyadic relationship is built on repetitive and cumulative 

interactions and creates a unique culture shared by partners (Friedlander et al., 

2019). That’s why communication within a dyadic interaction provides a pathway 

to investigate relationship dysfunctions between partners or between therapists and 

clients (Heyman, 2001). Social expressions, as speech production, and social 

experiences, as emotional states, emerging during a conversation are rooted in 
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psycho-biological processes, which are, as proposed by Porges (2001), for a part, 

inherited from evolution with the function to initiate and support social interactions. 

Two levels of analysis exist to observe couple interaction. The first, the 

macro level, is situated on the overall interaction and can provide general 

information about different dimensions, as for example the average level of positive 

affect or the average quality of communication (Friedlander et al., 2019). The 

second, the micro level, considers the interaction as subdividable into smaller 

sequences of interaction either based on the talk turn level or on a continuous 

temporality. Researches have shown that diverse relational outcomes can be 

predicted based on a small part of interaction and that talk turn level has become a 

golden standard for many coding systems (Friedlander et al., 2019).  

Changes and processes occurring continuously during an interaction are part 

of a dynamic and self-organized ensemble that constitutes a relationship (Butler, 

2011). In that sense, while speaking, partners are simultaneously and mutually 

influencing each other in a sequence of distinct behaviors. This point is leading to 

the conceptualization that a given behavior in an interaction limits the response 

options and, therefore, this response can be predicted (Friedlander et al., 2019).  

Partner’s behavior is a crucial component of intimate relationships and can 

be systematically observed as an interpersonal or intrapersonal aspect of interaction. 

In the current study the main question is how accurate objective interpersonal 

aspects of interaction (i.e., speech) can predict an intra-personal subjective aspect 

(i.e., emotional valence) on a talk turn level. 

 

1.2 Interpersonal Aspects: Speech 
Behavior, as speech, can be considered as an objective measure widely used 

to study interactions (Black et al., 2013). The complexity of dyadic interaction can 

be partially explained by its multidimensional nature, which can be summarize for 

interpersonal aspects into three dimensions of behavior: verbal (e.g., words, 

meaning), paraverbal (e.g., pitch, loudness) and nonverbal behaviors (e.g., facial 

expressions, posture) (Friedlander et al., 2019). Speech is included on many 

different interaction coding systems and is often associated with nonverbal 

behaviors as gestures or facial expressions. Facial expressions, more specifically 

muscle movements, are far the most studied dimension (Keltner et al., 2019), 
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contrasting with acoustic features who did not elicited much attention till the end 

of the 20th century.  The development gap of technologies needed to analyze 

acoustic features could partially explain a part of that lag (Scherer, 1986). Another 

reason concerns the limitation of the human auditory perception system in 

discerning acoustic characteristics in a reliable, objective and detailed way (Black 

et al., 2010). Computers are better suited for this task allowing them to extract 

systematically and automatically a high number of acoustic variables.  

Most common features extracted from speech can be classified into four 

categories: pitch (e.g., level, range and contour of the fundamental frequency), 

loudness (e.g., energy and amplitude perceived as intensity of the voice), voice 

quality (e.g., formants and spectral features) and durational measures (e.g., speech 

rate). Two categories can be linked directly to a specific step of sound production 

occurring in the body. Initially, air exhaled from the lungs provokes oscillations of 

the vocal cords located in the larynx (Fitch, 2000). Oscillation’s frequency of vocal 

cords is the physical process that determines the pitch. The acoustic energy 

generated passes then through the vocal tract (i.e., the pharyngeal, oral and nasal 

cavities) which acts as a filter and shapes the voice quality creating specific 

formants (Fitch, 2000). 

After having highlighted the importance, the complexity and the specificity 

of speech as an interpersonal aspect of interactions, the second variable of interest 

for this study will be discussed in the next section. 

 

1.3 Intra-Personal Aspects: Emotion 
Intra-personal aspects of interaction take place within individuals and as for 

interpersonal behaviors are of a multidimensional nature. The task of defining these 

aspects is somewhat more delicate and should include, on a cognitive level, 

subjective experience, but also changes on physiological and neurological levels. 

To start, let’s mention that emotion should not be mixed up with other types of 

affective states as mood (i.e., more diffuse state), interpersonal stances (e.g., distant, 

cold and warm), attitudes (i.e., affectively colored beliefs) or personality traits (i.e., 

stable personality dispositions) (Scherer, 2003).  

Even though a lack of agreement in the scientific community about how to 

define emotion has been reported (Barret, 2006; Cole et al., 2004), numbers of 
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theories got strong support in specific areas of research. In connection with speech 

and emotion, the component model of affective states proposed by Scherer (1986) 

is especially relevant and is also broadly recognized and used (Mauss & Robinson, 

2009). In line with this theory, any event or signal perceived is first evaluated in 

terms of its significance for survival and well-being (Scherer, 1986; Cole et al., 

2004). This process is called appraisal and gives rise to different emotional 

responses, such as subjective experiences, activation of the nervous systems and 

behaviors (Mauss & Robinson, 2009). The distinction between emotions and 

appraisal remains unclear, because emotions could be also considered as 

biologically prepared capabilities preceding and organizing the appraisal process 

(Cole et al., 2004).  

Nevertheless, emotion can be considered as a rapid and fluid process that 

can be periodically perceived by a person and then apprehended as a subjective 

experience or a feeling (Cole et al., 2004). In that view, emotion is a series of 

interrelated adaptive changes that take place in several subsystems of the organism, 

with each change being simultaneously influenced by the previous one and 

influencing the next (Scherer, 1986). Facing a quick and continuous process, 

researchers must remain conscient that its nature involves variations often beyond 

the detection’s level of chosen measures (Cole et al., 2004).  

These series of interrelated adaptive changes subjectively perceived as 

emotional entities can be labeled by a person in different ways, the most commonly 

studied being discrete emotions (e.g., joy, anger, disgust, sadness, fear and 

surprise). This approach collected strong support, but no consensus exists on a 

number of questions about discrete emotions, such as how many emotions exist and 

if they are at all differentiable. An interesting question concerns the existence of 

more fundamental psychological processes that could be of a better fit to support 

scientific induction of emotion (Barret, 2006). Following that thought, discrete 

emotions could be described by a combination of different dimensions reflecting 

these underlying psychological processes. For this study, it is also relevant to 

mention that, concerning self-reported emotional states, dimensions seem to better 

explain the variability observed than discrete categories of emotion (Mauss & 

Robinson, 2009). 

Three main dimensions can be of interest here and are commonly reported 

as important to explain emotional states (Mauss & Robinson, 2009). The first, 
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arousal, concerns the level of activation or intensity reported. For example, a low 

arousal could correspond to being quiet or bored, and a high arousal to being 

surprised or angry. The second, valence, often coupled with activation to describe 

discrete emotions, concerns the level of pleasure or displeasure reported. Valence 

results from the process of valuation which represent the meaning analysis of a 

stimulus judged as helpful or harmful (Barret, 2006). This second dimension could 

be considered as a basic building block of emotional life, also called a core affective 

state (Barret, 2006). The third, the motivational dimension of approach-avoidance, 

concerns the tendencies to approach (e.g., facilitated by excitement) or avoid a 

given stimulus (e.g., facilitated by anxiety) (Barret, 2006). Other dimensions, that 

are more or less related to the third one, are also reported, as power or control 

(Scherer, 2003), but for the purpose of this study, they will not be introduced in 

further details. 

This section has focused on different elements of theory helping to define 

and understand how the concept of emotional valence is approached in the present 

study. In the next section the focus will be put on how speech can express emotions 

as it commonly appears in the literature. 

 

1.4 Vocal Expression of Emotion 
Emotions are an important dimension of interactions that initiate responses 

through changes in physiology, thoughts and expressive behaviors, and 

communicate signals that coordinate social contacts (Keltner et al., 2019). Within 

meaningful relationships, discussions are regulated through emotion expression, as 

speech, which mirror physiological and cognitive changes. These emotional 

expressions can be considered as multimodal and dynamic patterns of behavior, 

either of an interpersonal (e.g., movements of the face, eyes, body parts or 

vocalization) or of an intrapersonal aspect (e.g., autonomic response, scent) 

(Keltner et al., 2019). 

Focusing on speech, a distinction needs to be made between the verbal and 

the paraverbal dimensions. To clarify this, speech is defined here as qualities apart 

from the actual verbal content (Juslin & Scherer, 2005). The second part of the well-

known expression “it’s not what you said, but how you said it” gives a good 

example of what is referred to as speech qualities. To support this dichotomization, 
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researches showed that emotions can be communicated through speech without any 

verbal content (Cowie et al., 2001). From an evolutionary perspective, speech and 

mechanisms of sound production developed in a tied manner, independently from 

the evolution of language (Fitch, 2000). 

The idea that emotions influence physiological processes and that these 

changes have an impact on acoustic characteristics of speech can be traced back to 

Darwin and can be found in Spencer’s law (Juslin & Laukka, 2003). The 

modulation of the striated musculature activity corresponding to emotional changes 

is directly linked to the production of vocalization. Following the component 

process model of emotion (Scherer, 1986), changes in muscle tension are controlled 

by the somatic nervous system, the autonomic nervous system and other organismic 

subsystems, which are themself influenced by the process of appraisal. In other 

words, the muscle units mobilized for vocal expression are controlled in part by 

emotion through physiological changes. 

Considering the physiology of vocal expression of emotions, three systems 

controlled by autonomic and somatic nervous systems are of a particular interest, 

namely respiratory (producing air exhaled from the lungs), vocal (phonatory and 

articulatory apparatus) and resonance systems (vocal tract shape) (Johnston et al., 

2001; Scherer & Bänziger, 2004). Nevertheless, speech is not reducible to 

expression of emotion and changes in pitch, loudness or voice quality also serve to 

communicate other phonological, syntactic or meaning aspects of verbal 

communication (Scherer, 1995). 

The brunswikian lens model of vocal communication of emotion used by 

Scherer (2003) proposes a way to decompose the process into an encoding phase, 

consisting of the vocal expression of emotion described above, and a decoding 

phase in which the acoustic changes are considered by the listener as cues to speaker 

affect. During this decoding phase, inferences of other’s emotions are made based 

on internalized representations of the observed speech changes (Scherer, 2003). The 

current emotional state of the listener is affected by the evaluation process of these 

internalized representations. Knowing that the resulting emotional changes will 

affect vocal expression, this explains how partners influence each other’s emotional 

states through speech in an interdependent manner while interacting. 

Researches have shown that humans demonstrate high accuracy rates when 

judging emotional state from the voice alone (Scherer, 1995; Banse & Scherer, 
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1996). The emotional attribution is significantly associated with different acoustic 

parameters changes, as pitch range, intensity and speech rate (Scherer, 1995). For 

example, a narrow pitch, or fundamental frequency, range is often perceived as a 

sign of sadness, when a wide one is often perceived as a sign of high level of arousal 

and highly negative emotions (Scherer, 1995). A linear relationship between pitch 

range and the attributed level of arousal can be observed. Even though humans 

seemed highly suited to decode vocal expression of emotions, the subjectivity of 

auditory perception is highly problematic and generates low scores of inter-coder 

reliabilities (Scherer & Bänziger, 2004). Choosing an automatic sound processing 

approach to extract acoustic features seems a suited choice to overcome this lack of 

objectivity. 

Vocal expression of emotions has been mostly studied based on discrete 

emotions (Cowie et al., 2001), valence and arousal being often obtained by 

converting discrete emotions into these two dimensions. Using an automatic sound 

processing approach, researches converge supporting the existence of specific 

acoustic profiles that could differentiate a large number of discrete emotions 

(Goudbeek & Scherer, 2010). If fundamental frequency and intensity measures are 

reported to discriminate well between levels of arousal, they often fail when valence 

is varying, showing the importance of a multidimensional approach (Goudbeek & 

Scherer, 2010). Valence could be better predicted by voice quality generally (e.g., 

spectral characteristics) and especially in comparison with pitch (Goudbeek & 

Scherer, 2010), but a lack of research on valence and incoherent results do not allow 

to make any strong predictions based on the actual knowledge. The current study 

proposes to align with the few other researches on vocal expression of emotions 

based on valence. But rather than convert discrete emotions into dimensional 

scores, self-reported valence emotional scores are directly measured using the 

Affect Rating Dial (Ruef & Levenson, 2007), a method described later in the 

corresponding section. 

Vocal expression of emotional valence has been presented in link with a 

more global perspective on emotion expression and specific categories of acoustic 

features relevant to this area of research have been discussed. Directly connected to 

it, a new area of research that focuses on automatic processing of acoustic features 

emerged in the last decades. In this approach, machine learning is the most 

commonly used technology and is the one that was chosen for the current study to 
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explore the prediction accuracy of chosen acoustic features on emotional valence 

self-rating scores. The machine learning approach will be introduced in the next 

section. 

 

1.5 Machine Learning 
To open this section on machine learning, let’s start with a citation that, even 

its rather enthusiastic form, highlight the complementarity of scientific research and 

technology development: 

 

New directions in science are launched by new tools much more than by 

new concepts. The effect of a concept‐driven revolution is to explain old things in 

new ways. The effect of a tool driven revolution is to discover new things that have 

to be explained. (Dyson, 1998, as cited in Goldberg et al., 2020 (p. 438)) 

 

The relationship of emotional valence, specifically self-reported, and vocal 

expression being not well documented, machine learning could provide a tool-

driven approach to explore this link in a pragmatic and predictive way. In addition 

to that, when dealing with big data, as for extracted acoustic features, machine 

learning has been recognized to be a robust technique (Shatte et al., 2019). This 

computational technology uses self-learning algorithms to improve their 

performances based on previous experiences (Goldberg et al., 2020), often to 

predict chosen outcomes. It is important to mention that, compared to commonly 

used statistical analyses, machine learning does not usually fit to model causal 

relationships between variables, but can inform on a given model about its 

predictive performances.  

Successful attempts to automating the assessment of aspects of treatment 

have been conducted using machine learning and natural language processing (i.e., 

verbal and paraverbal) (Goldberg et al., 2020). For example, in mental health 

conversational agents, using this technology based on language processing, are 

already implemented in activities related to medical care (Miner et al., 2017). 

Domains of mental health has been reported to include speech processing technics 

for detection and diagnosis of mental problems as suicide ideation, schizophrenia, 

depression, drugs intake or at-risk patients of Alzheimer’s (Shatte et al., 2019; 



 15 

Kliper et al., 2015). Overall, the potential of machine learning for improving clinical 

aspects of treatment is collecting an increasing interest among the research 

community, especially because once an algorithm has been proven to be reliable 

and helpful, it can be deployed on a broader scale with limited additional costs or 

human judgment (Goldberg et al., 2020). 

More specifically connected to this study, researches using acoustic features 

to predict emotions exist and show compelling findings (for a review see Swain et 

al., 2018). An interesting fact is that among the 59 studies reported by Swain (2018), 

only four of them focuses on emotional dimensions (Quiros-Ramirez et al., 2014; 

Lee & Narayanan, 2003; Lee & Narayanan, 2005; Grimm et al., 2008) and none 

used self-reported measures, but rather used scores rated by external trained 

researchers and calculated after controlling for inter-judge fidelity. The emotion 

recognition field using new technologies is obviously lacking in studies focusing 

on emotional dimensions and using self-rating scores. The current study addresses 

these problems focusing on emotional dimensions with the use of self-reported 

scores. 

 

1.6 Current Study 
The current study proposes to explore the self-rated emotional valence 

scores prediction accuracy based on extracted acoustic features of couple 

interactions using a machine learning approach. The talk-turn level is chosen to 

extract acoustic features and to run the predictions as it is often used and is 

recognized as a golden standard. This choice allows a temporal granularity neither 

to narrow or to wide. Since emotional expression is of a continuous nature, focusing 

on the process would require extracting vocal features using the smallest measures 

available (i.e., few microseconds). The problem using such temporal granularity is 

that, even if it allows to grasp micro changes in speech, the corresponding self-

reported feeling measures do not share the same rapidity of variation. That would 

imply introducing more acoustic different measures for the same emotional score. 

On the other hand, a too wide temporal granularity would not fit the rapid changing 

nature of emotions and would not be adequate for this study. Talk turns are by 

nature varying largely in length, but the ecological validity of this phenomenon 
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reflects a reality of couple interaction and is a solid argument for backing up this 

approach. 

Partners simultaneously influencing each other, three different models (i.e., 

own, crossed or mixed predictive models) are first tested to investigate if higher 

predictive accuracy rates are obtained using exclusively one or both partner’s 

acoustic features to predict either own’s or partner’s emotional valence scores 

accuracy (see Figure 1). Different acoustic feature sets are then compared in terms 

of their accuracy scores. Keeping in mind that this study proposes to explore 

relationships between speech and emotional valence with the use of machine 

learning rather than try to test specific assumptions, two main hypotheses can 

nevertheless be formulated. The set using all acoustic features should predict 

emotional valence with the highest accuracy performances above all, because it 

contains more features than all others and because the amount of data is known to 

often increase prediction accuracy (H1). Four other sets are focusing on the four 

main acoustic categories, pitch, loudness, durational characteristics and voice 

quality. As suggested by Goudbeek and Scherer (2010), valence should have a 

stronger impact on the voice quality (i.e., spectral features) than on pitch 

characteristics. Therefore, the voice quality set should predict emotional valence 

with higher accuracy than the pitch set (H2). 
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Figure 1 

Simplified Vocal Emotion Communication System with the Three Predictive Models 

 

 

 

 

 

 

 

 

 

Note. Basic vocal emotion communication process for couple interaction is 

represented with empty double arrows showing the interdependence of the two 

partners (a man on the left and a woman on the right). The full single arrows 

represent the own predictive model where own’s speech signals influence one’s 

own feelings. The dashed single arrows represent the crossed predictive model 

where one’s speech signals influence partner’s feelings. The dotted single arrows 

represent the mixed predictive model where both partner’s speech signals influence 

one’s feelings. 
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2. Method 
In this section, the dataset and preprocessing and then the machine 

learning’s process are described. 

 

2.1 Participants and Procedure 
101 Dutch speaking heterosexual couples took part in a Belgium study about 

Dyadic Interaction (Boateng et al., 2020). Participants were asked to discuss, first, 

about a negative topic (a highly annoying characteristic of their partner) and then, 

about a positive topic (a highly valuable one), both times for a 10-minute video and 

audio taped interaction. Couple were enjoined to wrap up the conversation after 

eight minutes and, for the first part, to end on good terms. Then, participants were 

isolated in separate rooms and watched the video recording of their conversation on 

a computer with the new task of rating their own emotion on a moment-by-moment 

basis using the Affect Rating Dial (Ruef & Levenson, 2007). Doing so, they had to 

continuously adjust a joystick from left to right (from very negative to very positive) 

in order to match their feelings as closely as possible, resulting in emotional valence 

rating scores. 

Trained research assistants encoded manually the recordings in separate talk 

turns corresponding to different events (i.e., man or woman talking, cross-talk, 

pause, laughter or noise). Each talk turn’s timestamp was marked based on auditory 

and visual perceptions. 197 files (99 for the first part of the conversation with a 

negative topic and 98 for the second part with a positive topic) have been created 

containing starting and ending timestamps for each talk turn plus a label describing 

the type of event. A total of 82’022 talk turns have been encoded with a talk turns 

average per file of 416 (for more details see Table 1). In a total of more than 32 

hours of recording, one third are represented by women talking and another one 

third by men talking (for more details see Table 2). 

200 audio files with a length of 10 minutes have been extracted from the 

video and converted into Waveform Audio File Format (WAV) using the python’s 

library audiofile. The lowest frequency of the human voice being equal to 80 Hz, a 

high pass filter, suppressing low frequencies, with a threshold of 80 Hz has been 

applied to avoid unnecessary noises. The use of a low pass filter, to suppress higher 

frequencies, has not been used in order to preserve the spectral characteristics. 
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Table 1 

Descriptive Statistics for Number of Talk Turns 

Number of talk turns Total  M SD Min Max 

All events 82022 416.36 78.40 153 625 

Man talking 20148 102.27 22.71 43 164 

Woman talking 20134 102.20 25.74 36 173 

 

 

 

Table 2 

Descriptive Statistics for Duration of Talk Turns 

Duration of talk turns Total M SD Min Max 

Man talking 10.52 1.88 2.00 0.01 87.16 

Woman talking 11.06 1.98 2.11 0.01 58.38 

 
Note. Totals are given in hours. All other statistics are given in seconds.  
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2.2 Measures 

2.2.1 Emotional Valence Rating Scores (EVRS) - Dependent Variables 

EVRS were measured on a continuous scale from -1 to 1 with a sampling 

rate of one per second. Valence refers to how negative to positive the person feels 

(Boateng et al., 2020) and should not be mixed with arousal, referring to how active 

and engaged a person feels. Scores have been separated into positive situations (i.e., 

the 10-minute discussion with positive topic) and negative situations (i.e., the 10-

min discussion with negative topic). 200 different files have been created, but 10 

have been removed (four had missing values and six had extreme and problematic 

values). A total of 190 files have been kept (see Table 3). As we can see in the Table 

3, EVRS are generally slightly lower in women than in men and also lower in 

negative than in positive situations.  

 

Table 3 

Descriptive Statistics for Emotional Valence Rating Scores (EVRS) 

Duration of talk turns M SD Min Max 

Positive discussions 

Men 0.37 0.20 -0.10 0.91 

Women 0.35 0.20 -0.06 0.89 

Negative discussions 

Men 0.14 0.23 -0.62 0.81 

Women 0.11 0.22 -0.41 0.82 

 
 

To solve the problem resulting from discrepancies in timestamps between 

talk turns and EVRS, an interpolation function has been used to predict EVRS for 

each talk turn. A spline function was chosen after testing it by predicting EVRS at 

-0.5 and at +0.5 second. Predicted values were then compared to originals at 0.0 

second and reports showed strong accuracy scores (for more details, see Annex 1, 

and for the script, see Annex 2). 
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Another problem emerged related to variations of talk turns durations. The 

sampling rate of EVRS being of one per second, the following decision algorithm 

has been selected to interpolate EVRS for talk turns longer than 1 seconds and 

containing then potentially more than 1 corresponding EVRS. If talk turns durations 

are lower than two seconds, a unique timestamp, adding the starting time to the half 

of the talk turn’s length, is chosen to interpolate the EVRS. If talk turns durations 

are higher than two seconds, starting and ending time as well as every additional 

second fitting in-between generates a list of timestamps. For each timestamp in this 

list, a corresponding EVRS is interpolated. The resulting EVRS for these talk turns 

is equal to the average of interpolated EVRS (for the script, see Annex 3, starting 

at end of p. 46). 

EVRS being ranging from -1 to 1 by definition, if the interpolated emotion 

ratings exceeded 1 in absolute value, for positive and negative values respectively, 

the value 1 or -1 has been used instead. Then EVRS were dichotomized between 0, 

equal to negative scores, and 1, equal to scores higher or equal to 0, thus allowing 

the use of classifier algorithms. 

 

2.2.2 Acoustic Features - Independent Variables 

The open-source library for Python openSMILE (for open-source Speech 

and Music Interpretation by Large feature-space Extraction) was used for the audio 

extraction (Eyben et al., 2010). openSMILE was designed to be employed by 

researchers and system developers and, from the year of its public release, in 2009, 

is a widely used toolkit in different research fields, like in psychology (see for 

example Faurholt-Jepsen et al., 2021; Li et al., 2021; de Boer et al., 2021). The 

extraction algorithms can provide thousands of different acoustic features. Besides 

the impressive quantity of information that could be provided, the use of such a 

number of variables can be problematic and the reason is twofold. First, extracting 

such a high number of acoustic features has often the consequence that researchers 

do not use the same set of variables making comparison between studies almost 

impossible and then, slowing the cumulation of empirical evidence (Eyben et al., 

2016). Secondly, with machine learning, the use of brute-forced (i.e., including as 

many variables as possible) could lead to over-adaptation of the model and limit 

generalization on unseen data (Eyben et al., 2016). To address these problems, a 

minimalistic and systematic use of acoustic features has been proposed with the 
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Geneva Minimalistic Acoustic Parameter Set (GeMAPs) which has been conceived 

specifically for psychologists (Eyben et al., 2016). GeMAPs is included in the 

openSMILE toolkit and was chosen to extract acoustic features in this study.  

Having explained the choice of the extraction toolkit, the actual sound 

extraction process is now described. After combining available files between 

EVRS, audio and talk turns, a total of 168 files (86 for negative and 82 for positive 

discussions) have been successfully extracted (for the script, see Annex 3). 58 

separate audio features, consisting of low-level descriptors, functionals and  

temporal features, were created for each talk turn. Arithmetic means and 

coefficients of variation, among other functionals, were generated for three 

categories of parameters (i.e., frequency, amplitude and spectral balance) and 

temporal features (for descriptive statistics of a feature’s selection, see Table 4; for 

more details about all features and sets, see Annex 6, p. 54). 

 

2.3 Statistical Analysis 
Cleaning data sets is an important prior step to using machine learning and 

help optimizing performances. Only talk turns for men and women with a 

fundamental frequency (F0) higher than zero and without missing values have been 

kept. To avoid future problems concerning the size of test and training sets 

regarding the number of iterations, only files containing more than 40 talk turns for 

men or women were kept (for the script, see Annex 4). After data cleaning, a total 

of 155 files (79 for the negative discussion and 76 for the positive) still remained in 

the study. 

In line with often used models in the literature, three models have been 

selected: Balanced Random Forest (BRF), Support Vector Machine with the radial 

basis function and K-Nearest Neighbors. After running multiple experiments on the 

mixed predictive model with all acoustic features, BRF performed the best overall 

and was selected for all future analysis. Scikit-learn (Pedregosa et al., 2011) and 

Imbalanced-learn (Lemaître et al., 2017) libraries for Python have been used to run 

machine learning models and the default values of the hyperparameters, which are 

known to be robust for the Random Forest Model (Probst et al., 2019), have been 

kept. 
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Dealing with 155 files and two different ones, when available, for each 

couple (i.e., one for positive and one for negative discussions), a customized 

function has been created to generate the data sets before the split for train and test 

sets. This function allows a given number of different talk turns (i.e., a number of 

iteration) to be randomly chosen among each file (for the script, see Annex 5). The 

minimal number of talk turns for women or men per file being of 40, no more than 

30 iterations have been used to avoid having not enough talk turns or exactly the 

same ones each time. 10, 20 or 30 iterations have been tried for the different models. 

The resulting subsampled sets are then split into training and test sets with a ration 

of 0.25 for the test set. 

EVRS having been binarized and the resulting classification being 

unbalanced for positive and negative emotional valence, a metric balanced accuracy 

has been utilized to assess performances. The formula for balanced accuracy is 

given bellow. The final performance results consist of average and standard 

deviation of 100 balanced accuracies scores based on the same model but with each 

time a new subsampled set. 

 

!"#"$%&'	"%%)*"%+ = 1
2 (	

01
01 + 34 +

04
04 + 31	) 

 

At the end, all possible combinations of iterations (i.e., 10, 20 or 30), 

predictive models (i.e., own, crossed or mixed), discussion types (i.e., positive, 

negative or all), feature sets (i.e., all, durational, loudness, pitch or spectral) of sex 

(i.e., men or women) have been tried out and a total of 270 different average 

balanced accuracies have been produced and analyzed (for the script, see Annex 6). 
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3. Results, Discussion, Future Research 
3.1 Results 

A total of 270 variations using BRF has been processed and for each one, 

average balanced accuracy (BA) has been generated. The overall best BA is of 

58.74% for predicting women’s emotional valence with the mixed predictive model 

using 30 iterations, negative discussions and the durational feature set. Table 5 

shows the best performances filtered by variables. The number of iterations 

increases the best performances modestly, only by 0.29%. Results using only 

positive discussions have the lowest BA (55.28%) and do not differ from chance, 

but performances are better using only negative (58.74%) or both (58.43%) 

discussions. All best performances for feature sets above 58%, are all significatively 

different from chance and do not differ between them. The mixed predictive model, 

which uses both partners' acoustic features, is the best one and the only one that 

differs significantly from chance. The partner’s sex does play a role, emotional 

valence is better predicted for women (58.74%) than for men (54.98%). 

 

3.2 Discussion 
The goal of the current study is to investigate the link between speech 

signals and emotional valence using a machine learning approach. Prediction 

performances are reported in the literature to be inconsistent and especially low for 

this dimension, but specific acoustic features could work better than others for this 

task. Using different predictive models and acoustic feature sets, the hope of this 

study was to obtain strong prediction accuracies and to observe differences among 

acoustic features. Unfortunately, the results in this study, even still different from 

chance, show low prediction accuracies and no significant differences have been 

found between acoustic features, infirming both previous hypotheses. No benefits 

in performance have been gained using the presented approach. 

Discussing the quality of accuracy for emotion recognition is a complicated 

task and there is no clear standard or procedure. In the literature, accuracy scores 

for valence based on speech range from bellow 50%, meaning that the use of 

algorithms is less effective than flipping a coin, to over 90% (Schuller et al., 2009; 

Swain et al., 2018). In this study, the best accuracy score being of 59%, it can be 

stated that the chosen models performed poorly. Nevertheless, the highlighted 
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results in Table 5 are still significantly different from chance and, knowing that 

valence is harder than other emotional dimensions to predict, the obtained 

predictions are considered as valuable. Compared with another study (Eyben et al., 

2013), the current one presents similar accuracy scores. The differences in model 

variations will be now discussed per variable in more details. 

Augmenting the number of iterations through each file increase the accuracy 

slightly, but not significantly after 20 iterations. Processing power needed to run 

predictions increasing by the amount of data provided, using not more iterations 

that is needed can save a lot of processing time. For similar conditions as this 

experimentation, starting the model with 20 iterations per file for sampling could 

be a good start. It is useless to say, that, the minimum number of talk turns for men 

or women should be taken into account. Having used a minimal cut-off of 40 talk 

turns and running the model 100 times, it could be problematic to use 40 or more 

iterations to run the predictions, because the exact same talk turns would be selected 

each time not allowing them to be randomly picked anymore. 

Acoustic features extracted from positive discussions do not predict 

significantly EVRS better than chance. Negative discussions are better suited for 

this task. An explanation could be that, even the average of EVRS for both positive 

and negative situations is higher than 0, for negative situations, the average of 

EVRS is lower and nearer to zero. It does play an important role, because EVRS 

are classified into positive (higher than zero) and negative (lower than zero) 

emotional valence before running the models. It follows that the binarizing 

classification process of EVRS leads to include more negative deviations shifts as 

negative for negative situations, than for positive situations. Another explanation is 

based on the fact that conflict interactions could engage more partners in the 

conversation, resulting on wider behavioral responses. As showed in Table 3, 

minimal and maximal scores obtained during negative discussions demonstrate a 

wider range than the one obtained during positive discussions. These more extreme 

emotional shifts could therefore have a bigger impact on acoustic features which 

could explain why accuracy scores are higher for negative than positive situations. 

A surprising result is that acoustic features perform all equally, which 

invalidate both assumptions that, first, using all acoustic features should show the 

highest accuracy scores (H1) and that, secondly, the voice quality set should 

perform better than the pitch set (H2). The results from Goudbeek & Scherer 
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(2010), showing that intensity, spectral and durational characteristics of speech are 

more correlated to emotional valence than pitch, could not have been translated and 

reproduced here. Even correlation and prediction are not of the same nature, it could 

have been rationally expected that it should be also observed using a machine 

learning approach. Maybe the fact that the models show overall poor results may 

play a role, in the sense that they do not allow variations to be good captured 

limiting the observation of differences among acoustic features. Cultural 

differences specific to Dutch culture and language could also explain that the results 

are not as well predictable as in other countries. The so called “pull effect” (i.e., 

external factors that affect emotion expression, such as “social display rules”) as 

opposed to “push effect” (i.e., physiological changes) (Scherer, 1995), may here be 

helpful to explain the lack of differences between the acoustic sets. If Dutch couples 

would be found to regulate their feelings or to express them in a culturally specific 

way, that could mean that speech signals may be less correlated to partner’s 

emotional valence. Another explanation could come from the same problem 

encountered for discrete emotion recognition, when different emotions are 

correlated to the same changes in speech signals. For example, happiness and anger, 

which could be categorized as having respectively positive and negative valence, 

have been both reported to correlate with higher pitch average, wider pitch range 

and higher intensity (Scherer, 1986; Cowie et al., 2001). Similar impacts on speech 

signals from different emotional states, could diminish the predictive accuracy of 

models using only one dimension. 

The mixed predictive model, using both partner’s speech signals to predict 

EVRS, works the best and is the only one having accuracy scores differing 

significantly from chance. These results show that using acoustic features for both 

partners leads to better performances than to treat them separately. The fact that 

using one partner speech signals to predict his or her own emotional valence (own 

predictive model) do not differ from predicting other’s emotional valence (crossed 

predictive model) can be explained by the choice of the talk turn as a temporal frame 

for emotion. Knowing that emotional changes are of a continuous nature, it can be 

assumed that during a talk turn, micro emotional changes occurring within the 

speaker as well as within the listener are to be captured. Meaning that emotional 

changes either expressed through speech or being the result of the impact of the 

speech on both partners are included in EVRS on a talk turn level. The temporal 
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granularity being not precise enough to differentiate between them, this could 

explain why no significant differences have been observed between best 

performances of own and crossed predictive models. 

Only predictions for women shows significant accuracy scores. In emotion 

recognition, women have been reported to present higher accuracy rate than men 

(Swain et al., 2018), meaning that their emotions could be better predicted than for 

men. An explanation could be that women and men differ biologically impacting 

the process of vocal expression, as for example having higher pitch range for 

women than for men. Among many other known differences in psychology between 

men and women, emotion regulation could be particularly relevant here. 

Differences in emotional response strategies between men and women (see for 

example Nolen-Hoeksema, 2012) will have an impact on emotion expression and 

therefore on speech signals. Even better understanding of this link could be of 

importance, these differences go beyond the reach of the current study and will not 

be discussed further. 

After having discussed the results, more general limitations will be 

introduced now. It is a difficult task to compare different results in emotion 

recognition research area, because the procedure and the nature of emotion differ 

strongly between studies. For example, some studies are using emotive (i.e., 

produced by actors) and others emotional (i.e., spontaneously produced) 

expressions of emotional states (Banse & Scherer, 1996). Even more, often, 

dimensional emotions are being generated based on discrete emotion data sets 

which differ in method from directly measuring arousal or valence. Adding to the 

diversity of these approaches, the methodological differences between emotions 

having been coded by an external person and self-reported measures of emotion can 

also generate noise and confusion when trying to compare different studies. 

Therefore, all these limitations have to be taken into account for each attempt to 

generalize the current results. 

 

3.3 Future Research 
For further research, different elements can be changed to improve the 

current approach. First, it is important to remember that speech is only one modality 

of emotion expression among others occurring during interactions. Combining 
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linguistic with acoustic dimensions often shows better results (for example see Lee 

& Narayanan, 2005). Building a multimodal approach for emotion recognition (e.g., 

combining linguistic, facial and vocal information) is certainly a new challenge for 

future research and can help improving performances. But such an approach has to 

be done carefully, because performances do not improve only regarding the 

richness of the data (i.e., the more modalities that are included), but also its design, 

including setting up machine learning models (for example see Fragopanagos & 

Taylor, 2005).  

Secondly, using a smaller temporal frame, than the talk turn level, to 

measure emotional states that match the EVRS sampling rate could more effectively 

catch smaller variations and shifts in emotional state, especially for extremely long 

talk turns (see the maximum duration of talk turns in Table 4). Even talk turn level 

is a golden standard and can be ecologically justified, this choice implies also a loss 

of information. Concretely, for talk turns during more than 2 seconds, an average 

of EVRS has been generated and, therefore, variations have been flattened.  

Dividing a talk turn on samples smaller or equal to two seconds could describe in a 

richer way the emotional process and generate better performances. 

Thirdly, if the objective is to get the highest prediction accuracy and not 

trying to explore the relationship between speech and emotion, a more brute force 

approach using a larger number of acoustic features may lead to better results, but 

they will be more complicated to generalize. 

Finally, tuning machine learning models and using more complex 

algorithms, such as neural networks (see for example Issa et al., 2020), may also 

show better performances, but with the risk of overfitting the data and not being 

helpful on another dataset. 

  



 29 

4. Conclusion 
Emotion recognition is a new field in psychology showing great progress 

and with many applications in the domains of mental health. Only few studies using 

a machine learning approach tried to predict emotional valance based on speech 

signals. In this area of research, results show often low prediction performances and 

incoherent results. The current study is one of the few that used self-reported 

emotional valence scores and had the goal to better understand the link between 

speech signals and emotion. Even using 270 different model variations focusing on 

emotional valence prediction, the best accuracy was low (59%), but significantly 

different from chance. Unfortunately, further analysis comparing different acoustic 

features were not able to highlight any significant differences among them. Vocal 

emotional valence prediction has still yet to be better apprehended and the key 

concept for future researches may well be a multimodal approach, combining 

speech signals, with other observations, such as linguistic information, or with other 

dimensions of emotion, such as arousal and motivational dimensions. The use of 

much larger sets of features may also be of help to get better prediction accuracies, 

but with the cost of failing to better understand the link between speech signals and 

emotion. 
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Table 4 

Descriptive Statistics for Selected Acoustic Features 

 
Positive discussions Negative discussions 

Acoustic features Men Women Men Women 

F0 semitone (from 27.5 Hz) 24.35 
(2.46) 

112.25a 

33.71 
(2.98) 

192.74 a 

24.49 
(2.5) 

113.16 a 

33.77 
(3.13) 

193.41 a  

Loudness 0.26 
(0.09) 

0.25 
(0.09) 

0.26 
(0.08) 

0.25 
(0.08) 

Jitter 0.03 
(0.02) 

0.03 
(0.02) 

0.03 
(0.02) 

0.03 
(0.02) 

Shimmer 1.27 
(0.32) 

1.28 
(0.29) 

1.28 
(0.33) 

1.28 
(0.28) 

Harmonics to noise ratio 4.42 
(1.28) 

6.84 
(1.52) 

4.41 
(1.30) 

6.73 
(1.57) 

Hammarberg index 28.16 
(3.81) 

25.89 
(4.29) 

28.04 
(3.83) 

25.60 
(4.22) 

Alpha ratio -19.28 
(3.21) 

-16.71 
(3.50) 

-19.13 
(3.31) 

-16.49 
(3.47) 

Voiced segments per second 2.61 
(1.06) 

2.85 
(1.13) 

2.66 
(1.08) 

2.86 
(1.15) 

Mean voiced segment length 
per second 

0.16 
(0.10) 

0.15 
(0.09) 

0.15 
(0.09) 

0.14 
(0.09) 

Mean unvoiced segment 
length per second 

0.22 
(0.13) 

0.20 
(0.13) 

0.21 
(0.13) 

0.20 
(0.13) 

 
Note. Only means (with standard deviations presented in parentheses) are given. 

a Fundamental frequency (F0) given in Hz. 
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Table 5 

Best Balanced Accuracies (BBA) filtered per Categories 

Category filtered Iterations Discussions Features Set Predictive 
Model 

Sex BBA (%) 

M SD 

Iterations: 10 x Negative All Mixed  Women 58.45 4.04 

20 x Negative Pitch Mixed Women 58.49* 2.57 

30 x Negative Durational Mixed Women 58.74* 2.41 

Discussions: All 30 x All Mixed Women 58.43* 2.03 

 Negative 30 x Durational Mixed Women 58.74* 2.41 

 Positive 20 x Spectral Mixed Women 55.28 4.53 

Features set: All 30 Negative x Mixed Women 58.60* 2.05 

 Durational 30 Negative x Mixed Women 58.74* 2.41 

 Loudness 30 Negative x Mixed Women 58.31* 2.20 

 Pitch 30 Negative x Mixed Women 58.67* 2.22 

 Spectral 30 Negative x Mixed Women 58.51* 2.46 
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Category filtered Iterations Discussions Features Set Predictive 
Model 

Sex BBA (%) 

M SD 

Predictive 
Model: 

Crossed 30 Negative Loudness x  Men 54.98 2.99 

Own 30 Negative Durational x Women 54.38 3.43 

Mixed 30 Negative Durational x Men 58.74* 3.43 

Sex: Men 30 Negative Loudness Crossed x 54.98 2.99 

 Women 30 Negative Durational Mixed x 58.74* 2.41 

 
Note. To avoid redundancies on the table, x corresponds to the category filtered. 

* Significative results different from chance (50%) using a one-tailed test with a p < .01. 
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Annex 1 

Metrics for Accuracy of the Spline Function 

Score type Men Women 

R2 (coefficient of 
determination) 

0.97 
(0.03) 

0.98 
(0.02) 

Explained variance 0.97 
(0.03) 

0.98 
(0.02) 

Mean squared error 0.00 
(0.00) 

0.00 
(0.00) 

 
Note. All scores are first calculated separately for each file and then all 

combined per type to generate averages and standard deviations. Standard 

deviations are given in parentheses. R2, explained variance and mean squared 

error are calculated using the formulas given bellow. 
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Annex 2 

############################### 
##### SPLINE CHECK SCRIPT ##### 
############################### 
 
### IMPORTING IMPORTANT LIBRARIES AND FUNCTIONS ### 
 
from scipy.interpolate import splev, splrep 
import statistics 
import pandas as pd 
import os 
import matplotlib.pyplot as plt 
from sklearn.metrics import \ 
    r2_score, \ 
    explained_variance_score, \ 
    mean_squared_error 
 
# defining the path where the 190 files are situated 
spline_check_path = "/ PATH TO THE FOLDER CONTAINING THE EVRS FILES /" 
 
 
### CONVERT VALUES FROM A DATA FRAME TO A LIST ### 
 
def df_values_to_list(data_frame, name_column): 
    """convert the values of a given variable (name_column) 
    from a given data frame (data_frame) to a list of values.""" 
 
    x = data_frame.loc[:, name_column] 
    x = x.values 
    x = x.tolist() 
    return x 
 
 
### COLLECT THE FILES NAMES FROM A FOLDER ### 
 
def get_files_names_from_folder(folder_path): 
    """collect the file names from a folder""" 
 
    path, dirs, files = next(os.walk(folder_path)) 
    files = [file for file in files if file != ".DS_Store"] 
    return files 
 
 
### GENERATING THE PREDICTIONS AND ACCURACY METRIC SCORES ### 
 
def spline_pred(file): 
    """export the spline prediction accuracy 
    for men and woman as csv files to the spline_check folder and 
    return multiples accuracy metric scores for men and women      
    separetly 
    """ 
 
    # creating the pandas dataframe for a given file 
    df_emo = pd.read_csv(f"{spline_check_path}{file}", sep=",") 
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    ### CREATING PREDICTIONS BASED ON A SPLINE FUNCTION ### 
 
    # checking for problems in file 
    if df_emo.isnull().values.any(): 
        print(f"{file} has some missing datas") 
    if len(df_emo) > 601 or len(df_emo) < 599: 
        print(f"{file} has a length problem") 
    else: 
        # selection of x = time, y = EVRS (h = men and f = women) 
        x = df_values_to_list(df_emo, "dialnr") 
        y_h = df_values_to_list(df_emo, "emo.m") 
        y_f = df_values_to_list(df_emo, "emo.f") 
 
        # creating predicted EVRS for x + 0.5 sec 
        x2_plus = [i + 0.5 for i in x] 
        # for men 
        spl_h1 = splrep(x, y_h) 
        y2_h1 = splev(x2_plus, spl_h1) 
        df_emo.insert(6, "emo_h1_spline_+0.5(s)", y2_h1) 
        # for women 
        spl_f1 = splrep(x, y_f) 
        y2_f1 = splev(x2_plus, spl_f1) 
        df_emo.insert(8, "emo_f1_spline_+0.5(s)", y2_f1) 
 
        # creating predicted EVRS for x - 0.5 sec 
        x2_minus = [i - 0.5 for i in x] 
        # for men 
        spl_h2 = splrep(x, y_h) 
        y2_h2 = splev(x2_minus, spl_h2) 
        df_emo.insert(5, "emo_h2_spline_-0.5(s)", y2_h2) 
        # for women 
        spl_f2 = splrep(x, y_f) 
        y2_f2 = splev(x2_minus, spl_f2) 
        df_emo.insert(8, "emo_f2_spline_-0.5(s)", y2_f2) 
 
        # create a csv file 
        df_emo.to_csv(f"/ FOLDER PATH FOR THE FILE /{file}") 
 
        ### CREATING ACCURACY METRIC SCORES ### 
 
        # for men 
        r_squared_h1 = \ 
            r2_score(y_true=y_h, y_pred=y2_h1) 
        expl_var_h1 = \ 
            explained_variance_score(y_true=y_h, y_pred=y2_h1) 
        mse_h1 = \ 
            mean_squared_error(y_true=y_h, y_pred=y2_h1) 
        r_squared_h2 = \ 
            r2_score(y_true=y_h, y_pred=y2_h2) 
        expl_var_h2 = \ 
            explained_variance_score(y_true=y_h, y_pred=y2_h2) 
        mse_h2 = \ 
            mean_squared_error(y_true=y_h, y_pred=y2_h2) 
 
        # for women 
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        r_squared_f1 = \ 
            r2_score(y_true=y_f, y_pred=y2_f1) 
        expl_var_f1 = \ 
            explained_variance_score(y_true=y_f, y_pred=y2_f1) 
        mse_f1 = \ 
            mean_squared_error(y_true=y_f, y_pred=y2_f1) 
        r_squared_f2 = \ 
            r2_score(y_true=y_f, y_pred=y2_f2) 
        expl_var_f2 = \ 
            explained_variance_score(y_true=y_f, y_pred=y2_f2) 
        mse_f2 = \ 
            mean_squared_error(y_true=y_f, y_pred=y2_f2) 
 
        ### RETURNING THE AVERAGE METRIC SCORES FOR THE FILE 
        # BASED ON -0.5 and +0.5 SECONDS ### 
 
        return (r_squared_h1 + r_squared_h2) / 2, \ 
               (expl_var_h1 + expl_var_h2) / 2, \ 
               (mse_h1 + mse_h2) / 2, \ 
               (r_squared_f1 + r_squared_f2) / 2, \ 
               (expl_var_f1 + expl_var_f2) / 2, \ 
               (mse_f1 + mse_f2) / 2 
 
 
### GENERAL FUNCTION FRAMING THE WHOLE SPLINE CHECK REPORT ### 
 
def get_report_emo(): 
    """create a printed accuracy report 
    of the use of spline to EVRS""" 
 
    # creating empty lists and other variables 
    h_r_squared = [] 
    h_expl_var = [] 
    h_mse = [] 
    f_r_squared = [] 
    f_expl_var = [] 
    f_mse = [] 
    worked = 0 
    failed = 0 
    nan = 0 
 
    # starting the for loop for all files 
    # generating accuracy metric scores 
    # and checking for problems 
 
    for file in get_files_names_from_folder(spline_check_path): 
        print(file) 
        try: 
            new_h_r_squared, new_h_var, new_h_mse,\ 
            new_f_r_squared, new_f_var, new_f_mse \ 
                = spline_pred(file) 
            worked += 1 
        except ValueError: 
            failed += 1 
            pass 
        except TypeError: 
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            nan += 1 
        else: 
            # adding to the list the corresponding 
            # accuracy metric score for each file 
            h_r_squared.append(new_h_r_squared) 
            h_expl_var.append(new_h_var) 
            h_mse.append(new_h_mse) 
            f_r_squared.append(new_f_r_squared) 
            f_expl_var.append(new_f_var) 
            f_mse.append(new_f_mse) 
 
    ### CREATE THE REPORT ### 
 
    print(f"{worked} worked // {failed} failed " 
          f"// {nan} contained NaN\n") 
 
    print("for men") 
    print(f"the mean of r_squared = " 
          f"{statistics.mean(h_r_squared)} " 
          f"| sd = {statistics.stdev(h_r_squared)}") 
    print(f"the mean of explained variance = " 
          f"{statistics.mean(h_expl_var)} " 
          f"| sd = {statistics.stdev(h_expl_var)}") 
    print(f"the mean of mean squared error = " 
          f"{statistics.mean(h_mse)} " 
          f"| sd = {statistics.stdev(h_mse)}\n") 
 
    print("for women") 
    print(f"the mean of r_squared = " 
          f"{statistics.mean(f_r_squared)} " 
          f"| sd = {statistics.stdev(f_r_squared)}") 
    print(f"the mean of explained variance = " 
          f"{statistics.mean(f_expl_var)} " 
          f"| sd = {statistics.stdev(f_expl_var)}") 
    print(f"the mean of mean squared error = " 
          f"{statistics.mean(f_mse)} " 
          f"| sd = {statistics.stdev(f_mse)}") 
 
 
### LUNCH THE SCRIPT ### 
 
get_report_emo() 
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Annex 3 

############################### 
#####  OPENSMILE  SCRIPT  ##### 
############################### 
 
 
### IMPORTING IMPORTANT LIBRARIES AND FUNCTIONS ### 
 
import opensmile 
import os 
import pandas as pd 
from datetime import datetime 
from scipy.interpolate import splev, splrep 
from statistics import mean 
 
### SETTING PATHS ### 
 
PATH_TT = "/ FOLDER WHERE THE TALK TURNS ARE /" 
PATH_AUDIO = "/ FOLDER WHERE THE AUDIO ARE /" 
PATH_EMO = " / FOLDER WHERE EVRS ARE /" 
PATH_OUTPUTS = " / FOLDER WHERE THE OUTPUTS ARE GONNE BE SAVED /" 
 
 
### CREATE A DATA FRAME LIST OF TALK TURNS ### 
 
def create_tt_df(path_talk_turns): 
    """create a data frame list with all the talk turns csv files""" 
 
    path_folder = path_talk_turns 
    # assign path 
    path, dirs, files = next(os.walk(path_folder)) 
    file_count = len(files) 
    # create empty list 
    dataframes_list = [] 
 
    # append datasets to the list 
    for i in range(file_count): 
        if files[i] == ".DS_Store": 
            pass 
        else: 
            temp_df = pd.read_csv(f"{path_folder}{files[i]}") 
            temp_df.name = files[i] # way to keep track of the df 
            dataframes_list.append(temp_df) 
    return dataframes_list 
 
 
### CREATE A LIST FROM A DATA FRAME'S COLUMN ### 
 
def df_values_to_list(data_frame, name_column): 
    """convert the values of a given variable (name_column) 
    from a given data frame (data_frame) to a list of values.""" 
 
    x = data_frame.loc[:, name_column] 
    x = x.values 
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    x = x.tolist() 
    return x 
 
 
### CREATE THE SPLINE PREDICTION FOR EVRS ### 
 
def spline_time_profile_tt(path_file_emo_in, path_file_csv_outputs): 
    """export the spline representation of a given x and y / 
    calculating a mean of the emo ratings if the talk turn > 2 seconds""" 
 
    # create a data frame from EVRS 
    df_emo = pd.read_csv(path_file_emo_in, sep=",") 
    # create a data frame from opensmile extracted outputs 
    df_output = pd.read_csv(path_file_csv_outputs, sep=",") 
 
    # creating variables with time info 
    x2 = df_values_to_list(data_frame=df_output, 
                           name_column="start_sec") 
    duration = df_values_to_list(data_frame=df_output, 
                                 name_column="duration_tt_sec") 
    # creating a variables with time in the middle of the talk turn 
    x2 = [x2[i] + duration[i] / 2 for i in range(len(x2))] 
 
    ### FOR MEN ### 
 
    # creating the spline representation 
    x_h = df_values_to_list(data_frame=df_emo, 
                            name_column="time") 
    y_h = df_values_to_list(data_frame=df_emo, 
                            name_column="emo_h") 
    spl_h = splrep(x_h, y_h) 
 
    # creating the spline prediction 
    # using the time in the middle of the talk turn 
    y2_h = splev(x2, spl_h) 
 
    # checking if the predictions are > 1 
    has_to_be_checked = False 
    selected_index = 0 
    selected_index_list = [] 
    for item in y2_h: 
        if item > 1: 
            print(f"{path_file_emo_in}: h = {item} " 
                  f"| idx = {selected_index}") 
            has_to_be_checked = True 
            selected_index_list.append(selected_index) 
        selected_index += 1 
 
    # replacing everything > or < 1 or 1 by 1 or -1 
    y2_h = [1 if val > 1 else val for val in y2_h] 
    y2_h = [-1 if val < -1 else val for val in y2_h] 
 
    # checking if it worked 
    if has_to_be_checked: 
        for idx in selected_index_list: 
            print(f"h = ALL GOOD NOW : {y2_h[idx]} | {idx}!!!") 
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    ### FOR WOMEN ### 
 
    # creating the spline representation 
    x_f = df_values_to_list(data_frame=df_emo, 
                            name_column="time") 
    y_f = df_values_to_list(data_frame=df_emo, 
                            name_column="emo_f") 
    spl_f = splrep(x_f, y_f) 
 
    # creating the spline prediction 
    # using the time in the middle of the talk turn 
    y2_f = splev(x2, spl_f) 
 
    # checking if the predictions are > 1 
    has_to_be_checked = False 
    selected_index = 0 
    selected_index_list = [] 
    for item in y2_f: 
        if item > 1: 
            print(f"{path_file_emo_in}: f = {item} " 
                  f"| idx = {selected_index}") 
            has_to_be_checked = True 
            selected_index_list.append(selected_index) 
        selected_index += 1 
 
    # replacing everything > or < 1 or 1 by 1 or -1 
    y2_f = [1 if val > 1 else val for val in y2_f] 
    y2_f = [-1 if val < -1 else val for val in y2_f] 
 
    # checking if it worked 
    if has_to_be_checked: 
        for idx in selected_index_list: 
            print(f"f = ALL GOOD NOW : {y2_f[idx]} | {idx}!!!") 
 
    ### INSERT NEW PREDICTED EVRS ### 
 
    df_output.insert(8, "emo_h", y2_h) 
    df_output.insert(9, "emo_f", y2_f) 
 
    ### CALCULATE AVERAGE OF PREDICTED EVRS 
    # IF TALK TURNS > 2 SECONDS ### 
 
    # selecting rows > 2 seconds 
    index_long_rows = \ 
        df_output.index[df_output["duration_tt_sec"] > 2].tolist() 
 
    # for loop calculating average of predicted EVRS 
    for row in index_long_rows: 
        new_row = df_output.iloc[row] 
        start = new_row["start_sec"] 
        duration = new_row["duration_tt_sec"] 
 
        # expend the timestamps for talk turn 
        # to calculate the average predicted EVRS 
        expended_timestamps = [start + x 
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                               if start + x <= start + duration 
                               else start + duration 
                               for x in range(0, round(duration + 1))] 
 
        # average predicted EVRS per extra sec for men 
        interpolation_emo_h = \ 
            splev(expended_timestamps, spl_h) 
        interpolation_emo_h = \ 
            [1 if val > 1 else val for val in interpolation_emo_h] 
        interpolation_emo_h = \ 
            [-1 if val < -1 else val for val in interpolation_emo_h] 
        mean_emo_h = \ 
            mean(interpolation_emo_h) 
 
        # average predicted EVRS per extra sec for women 
        interpolation_emo_f = \ 
            splev(expended_timestamps, spl_f) 
        interpolation_emo_f = \ 
            [1 if val > 1 else val for val in interpolation_emo_f] 
        interpolation_emo_f = \ 
            [-1 if val < -1 else val for val in interpolation_emo_f] 
        mean_emo_f = \ 
            mean(interpolation_emo_f) 
 
        # replace old EVRS by the average predicted EVRS 
        df_output.at[row, "emo_h"] = mean_emo_h 
        df_output.at[row, "emo_f"] = mean_emo_f 
 
    # create a csv file with the average predicted EVRS 
    df_output.to_csv(f"{path_file_csv_outputs[:-4]}_mean.csv") 
 
 
### OPENSMILE EXTRACTION ### 
 
def opensmile_talk_turns(list_tt_df, 
                         path_audio=PATH_AUDIO, 
                         emo_path=PATH_EMO, 
                         path_outputs=PATH_OUTPUTS): 
    """opensmile extraction using GeMAPSv01b of a list 
    of wav files corresponding to the given list 
    of talk turns csv files / 
    it only gives the means per feature per talk turn / 
    => it creates 5 extra columns : 
    1) timestamp in sec for start 
    2) timestamp in sec for end 
    3) duration of the all talk turn 
    4) label corresponding to the event 
    5) index of the talk turn 
    => a file ending with : 'opensmile.csv' is created""" 
 
    # seting up opensmile set and level 
    smile = opensmile.Smile( 
        feature_set=opensmile.FeatureSet.GeMAPSv01b, 
        feature_level=opensmile.FeatureLevel.Functionals, 
    ) 
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    # starting the for loop to create a pandas dataframe 
    for df in list_tt_df: 
        current_time1 = datetime.now() 
        y = pd.DataFrame() 
        # removing the format .csv from the date frame name 
        new_name = df.name[0:len(df.name) - 4] 
        nbre_talk_turn = 1 
 
        # creating rows for each talk turn 
        for k in range(len(df)): 
            row = df.iloc[k] 
            start_time = row["start.tt"] 
            end_time = row["end.tt"] 
            duration = end_time - start_time 
            label = row["label"] 
            audio = f"{path_audio}{new_name}.wav" 
            new_df = smile.process_file(audio, 
                                        start=start_time, 
                                        end=end_time) 
            new_df.insert(loc=0, column="start_sec", 
                          value=start_time) 
            new_df.insert(loc=1, column="end_sec", 
                          value=end_time) 
            new_df.insert(loc=2, column="duration_tt_sec", 
                          value=duration) 
            new_df.insert(loc=3, column="label", 
                          value=label) 
            new_df.insert(loc=4, column="tt", 
                          value=round(nbre_talk_turn)) 
            y = y.append(new_df) 
            nbre_talk_turn += 1 
 
        # creating a csv file from the data frame 
        name_path_output = f"{path_outputs}{new_name}_opensmile.csv" 
        y.to_csv(name_path_output) 
 
        # replacing predicted EVRS using the spline function 
        
spline_time_profile_tt(path_file_emo_in=f"{emo_path}{new_name}.csv", 
                               path_file_csv_outputs=name_path_output) 
 
 
### LUNCH SCRIPT ### 
 
# Keeping track of processing duration 
format_time = "%H:%M:%S" 
current_time_start = datetime.now() 
print(f"All process starts at : 
{current_time_start.strftime(format_time)}\n") 
 
# creating data frames based on the talk turns information 
dfs_tt = create_tt_df(PATH_TT) 
 
# lunch the opensmile extraction 
opensmile_talk_turns(list_tt_df=dfs_tt) 
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# Keeping track of processing duration 
current_time_end = datetime.now() 
print(f"All process ends at : 
{current_time_end.strftime(format_time)}\n") 
total_time_process = current_time_end - current_time_start 
print(f"\nAll process finished after: {total_time_process}") 
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Annex 4 

############################### 
#### DATA CLEANING SCRIPT ##### 
############################### 
 
### IMPORTING IMPORTANT LIBRARIES ### 
 
import os 
import pandas as pd 
 
 
### SETTING PATHS ### 
 
IN_PATH = "/ FOLDER PATH WITH OUTPUTS /" 
OUT_PATH = "/ FOLDER PATH FOR NEW OUTPUTS /" 
 
 
### CREATE A DATA FRAME LIST FROM OUTPUT FILES ### 
 
def create_csv_df(path_folder): 
    # assign path 
    path, dirs, files = next(os.walk(path_folder)) 
    file_count = len(files) 
    # create empty list 
    dataframes_list = [] 
 
    # append datasets from the list 
    for i in range(file_count): 
        if files[i] == ".DS_Store": 
            pass 
        else: 
            temp_df = pd.read_csv(f"{path_folder}{files[i]}") 
            temp_df.name = files[i]  # way to keep track of the name 
            dataframes_list.append(temp_df) 
    return dataframes_list 
 
 
### LUNCH SCRIPT ### 
 
# create a list of dataframes from output files 
list_df = create_csv_df(IN_PATH) 
 
# for loop for preprocessing 
for df in list_df: 
    name = df.name 
     
    # drop the missing data 
    df.dropna(inplace=True) 
     
    # select only talk turns with men or women talking 
    for el in ["n", "p", "c", "l", "s"]: 
        df = df[df["label"] != el] 
     
    # select only rows where F0 > 0 
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    df = df[df["F0semitoneFrom27.5Hz_sma3nz_amean"] != 0] 
     
    # select only files if number of rows are > 40 
    # for men or women 
    if len(df[df["label"] == "m"]) < 40: 
        print(f"{name} tt for men =" 
              f"{len(df[df['label'] == 'm'])}") 
    elif len(df[df["label"] == "f"]) < 40: 
        print(f"{name} tt for women =" 
              f"{len(df[df['label'] == 'f'])}") 
     
    # creating a preprocessed csv file     
    else: 
        df = df.iloc[:, 5:] 
        df.to_csv(f"{OUT_PATH}{name}", 
                  index=False) 
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Annex 5 

############################## 
##### SUBSAMPLING SCRIPT ##### 
############################## 
 
 
### IMPORTING LIBRARIES AND FUNCTIONS### 
 
from random import randint 
import pandas as pd 
import os 
 
 
### SETTING PATHS ### 
 
OUTPUTS_PATH = "/ FOLDER WHERE THE OUTPUTS ARE /" 
 
 
### EXTRACTING FILE NAMES FROM A FOLDER ### 
 
def get_files_names_from_folder(folder_path): 
    """collect the file names from a folder""" 
 
    path, dirs, files = next(os.walk(folder_path)) 
    files = [file for file in files if file != ".DS_Store"] 
    return files 
 
 
### SUBSAMPLING FUNCTION ### 
 
def subsampling_data_set(num_iterations_trough_all, columns_names_list,  
                         only_pos=False, only_neg=False): 
    """create a given number of set for training or testing: 
    it randomly pick one observation (row) in each csv file  
    and assemble them in one csv file""" 
     
    # creating a list with all file names from the outputs folder 
    outputs_names = get_files_names_from_folder(folder_path=OUTPUTS_PATH) 
     
    # selecting only file for the selected discussion type 
    if only_pos: 
        outputs_names = [pos_name for pos_name in outputs_names if "pos" 
in pos_name] 
    if only_neg: 
        outputs_names = [neg_name for neg_name in outputs_names if "neg" 
in neg_name] 
         
    # extracting the column names from one outputs file 
    column_df_all = 
pd.read_csv(f"{OUTPUTS_PATH}{outputs_names[0]}").columns 
    column_names = ["file"] 
    column_names[1:] = column_df_all 
     
    # creating an empty data frame using the extracted column names 
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    new_data_set = pd.DataFrame(columns=column_names) 
    list_of_columns = \ 
        list(range(0, 1)) + list(range(4, 5)) + list(range(6, 70)) 
    new_data_set = new_data_set.iloc[:, list_of_columns] 
     
    # selecting only columns of interest 
    chosen_columns = \ 
        list(range(3, 4)) + list(range(5, 69)) # for EVRS and speech 
     
    # for loop for each file 
    for name in outputs_names: 
         
        # for loop for the selected number of iterations 
        for x in range(0, num_iterations_trough_all): 
             
            # creating the new data frame for the first iteration 
            if x == 0: 
                new_df = pd.read_csv(f"{OUTPUTS_PATH}{name}") 
                new_df = new_df.iloc[:, chosen_columns] 
             
            # adding a randomly selected row 
            # and keeping track of the already chosen rows 
            i = randint(0, len(new_df.index)-1) 
            new_row = new_df.loc[i] 
            new_row_plus = [name] 
            new_row_plus[1:] = new_row 
            index = len(new_data_set.index) 
            new_data_set.loc[index] = new_row_plus 
            new_df.drop([i], axis=0, inplace=True) 
            new_df = new_df.reset_index(drop=True) 
             
    # cleaning the data frame and renaming the column names 
    first_column = new_data_set.pop("file") 
    new_data_set.insert(0, "file", first_column) 
    new_data_set = new_data_set[columns_names_list] 
 
    return new_data_set 
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Annex 6 

################################### 
##### MACHINE LEARNING SCRIPT ##### 
################################### 
 
 
### IMPORTING IMPORTANT LIBRARIES AND FUNCTIONS ### 
 
import pandas as pd 
from sklearn.model_selection import train_test_split 
import statistics 
from datetime import datetime 
 
 
### DEFINING THE ACOUSTIC FEATURE SETS ### 
 
ALL = \ 
    ['file', 'label', 'emo_h', 'emo_f', 
     'F0semitoneFrom27.5Hz_sma3nz_amean', 
     'F0semitoneFrom27.5Hz_sma3nz_stddevNorm', 
     'F0semitoneFrom27.5Hz_sma3nz_percentile20.0', 
     'F0semitoneFrom27.5Hz_sma3nz_percentile50.0', 
     'F0semitoneFrom27.5Hz_sma3nz_percentile80.0', 
     'F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2', 
     'F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope', 
     'F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope', 
     'F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope', 
     'F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope', 
     'loudness_sma3_amean', 
     'loudness_sma3_stddevNorm', 'loudness_sma3_percentile20.0', 
     'loudness_sma3_percentile50.0', 'loudness_sma3_percentile80.0', 
     'loudness_sma3_pctlrange0-2', 'loudness_sma3_meanRisingSlope', 
     'loudness_sma3_stddevRisingSlope', 'loudness_sma3_meanFallingSlope', 
     'loudness_sma3_stddevFallingSlope', 'jitterLocal_sma3nz_amean', 
     'jitterLocal_sma3nz_stddevNorm', 'shimmerLocaldB_sma3nz_amean', 
     'shimmerLocaldB_sma3nz_stddevNorm', 'HNRdBACF_sma3nz_amean', 
     'HNRdBACF_sma3nz_stddevNorm', 'F1frequency_sma3nz_amean', 
     'F1frequency_sma3nz_stddevNorm', 'F1bandwidth_sma3nz_amean', 
     'F1bandwidth_sma3nz_stddevNorm', 'F1amplitudeLogRelF0_sma3nz_amean', 
     'F1amplitudeLogRelF0_sma3nz_stddevNorm', 'F2frequency_sma3nz_amean', 
     'F2frequency_sma3nz_stddevNorm', 'F2amplitudeLogRelF0_sma3nz_amean', 
     'F2amplitudeLogRelF0_sma3nz_stddevNorm', 'F3frequency_sma3nz_amean', 
     'F3frequency_sma3nz_stddevNorm', 'F3amplitudeLogRelF0_sma3nz_amean', 
     'F3amplitudeLogRelF0_sma3nz_stddevNorm', 'alphaRatioV_sma3nz_amean', 
     'alphaRatioV_sma3nz_stddevNorm', 'hammarbergIndexV_sma3nz_amean', 
     'hammarbergIndexV_sma3nz_stddevNorm', 'slopeV0-500_sma3nz_amean', 
     'slopeV0-500_sma3nz_stddevNorm', 'slopeV500-1500_sma3nz_amean', 
     'slopeV500-1500_sma3nz_stddevNorm', 'alphaRatioUV_sma3nz_amean', 
     'hammarbergIndexUV_sma3nz_amean', 'slopeUV0-500_sma3nz_amean', 
     'slopeUV500-1500_sma3nz_amean', 'loudnessPeaksPerSec', 
     'VoicedSegmentsPerSec', 'MeanVoicedSegmentLengthSec', 
     'StddevVoicedSegmentLengthSec', 'MeanUnvoicedSegmentLength', 
     'StddevUnvoicedSegmentLength'] 
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SPECTRAL = \ 
    ['file', 'label', 'emo_h', 'emo_f', 
     'F1frequency_sma3nz_amean', 'F1frequency_sma3nz_stddevNorm', 
     'F1bandwidth_sma3nz_amean', 'F1bandwidth_sma3nz_stddevNorm', 
     'F1amplitudeLogRelF0_sma3nz_amean', 
     'F1amplitudeLogRelF0_sma3nz_stddevNorm', 
     'F2frequency_sma3nz_amean', 'F2frequency_sma3nz_stddevNorm', 
     'F2amplitudeLogRelF0_sma3nz_amean', 
     'F2amplitudeLogRelF0_sma3nz_stddevNorm', 
     'F3frequency_sma3nz_amean', 'F3frequency_sma3nz_stddevNorm', 
     'F3amplitudeLogRelF0_sma3nz_amean', 
     'F3amplitudeLogRelF0_sma3nz_stddevNorm', 
     'alphaRatioV_sma3nz_amean', 'alphaRatioV_sma3nz_stddevNorm', 
     'hammarbergIndexV_sma3nz_amean', 
'hammarbergIndexV_sma3nz_stddevNorm', 
     'slopeV0-500_sma3nz_amean', 'slopeV0-500_sma3nz_stddevNorm', 
     'slopeV500-1500_sma3nz_amean','slopeV500-1500_sma3nz_stddevNorm', 
     'alphaRatioUV_sma3nz_amean', 'hammarbergIndexUV_sma3nz_amean', 
     'slopeUV0-500_sma3nz_amean', 'slopeUV500-1500_sma3nz_amean'] 
 
PITCH = \ 
    ['file', 'label', 'emo_h', 'emo_f', 
     'F0semitoneFrom27.5Hz_sma3nz_amean', 
     'F0semitoneFrom27.5Hz_sma3nz_stddevNorm', 
     'F0semitoneFrom27.5Hz_sma3nz_percentile20.0', 
     'F0semitoneFrom27.5Hz_sma3nz_percentile50.0', 
     'F0semitoneFrom27.5Hz_sma3nz_percentile80.0', 
     'F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2', 
     'F0semitoneFrom27.5Hz_sma3nz_meanRisingSlope', 
     'F0semitoneFrom27.5Hz_sma3nz_stddevRisingSlope', 
     'F0semitoneFrom27.5Hz_sma3nz_meanFallingSlope', 
     'F0semitoneFrom27.5Hz_sma3nz_stddevFallingSlope', 
     'jitterLocal_sma3nz_amean', 'jitterLocal_sma3nz_stddevNorm'] 
 
LOUDNESS = \ 
    ['file', 'label', 'emo_h', 'emo_f', 
     'loudness_sma3_amean', 'loudness_sma3_stddevNorm', 
     'loudness_sma3_percentile20.0', 'loudness_sma3_percentile50.0', 
     'loudness_sma3_percentile80.0', 'loudness_sma3_pctlrange0-2', 
     'loudness_sma3_meanRisingSlope', 'loudness_sma3_stddevRisingSlope', 
     'loudness_sma3_meanFallingSlope', 
'loudness_sma3_stddevFallingSlope', 
     'shimmerLocaldB_sma3nz_amean', 'shimmerLocaldB_sma3nz_stddevNorm', 
     'HNRdBACF_sma3nz_amean', 'HNRdBACF_sma3nz_stddevNorm'] 
 
DURATIONAL = \ 
    ['file', 'label', 'emo_h', 'emo_f', 
     'loudnessPeaksPerSec', 'VoicedSegmentsPerSec', 
     'MeanVoicedSegmentLengthSec', 'StddevVoicedSegmentLengthSec', 
     'MeanUnvoicedSegmentLength', 'StddevUnvoicedSegmentLength'] 
 
 
### BINARIZE EVRS INTO 0 AND 1 ### 
 
def binarize(values): 
    """binarize the values > 0 = 1 and < 0 = 0""" 
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    binarized = (values > 0).astype('int') 
    return binarized 
 
 
### CREATE DATA SET FOR THE MIXED PREDICTIVE MODEL ### 
 
def create_x_yf_ym_mixed(df, binarizing=True): 
    """create X, y_f and y_m from a df / 
    return => X, y_f, y_m""" 
 
    columns_index = list(range(1, 2)) + \ 
                    list(range(4, len(df.columns))) 
 
    X = df.iloc[:, columns_index] 
    X.loc[X["label"] == "m", "label"] = 0 
    X.loc[X["label"] == "f", "label"] = 1 
    y_m = df.iloc[:, 2] 
    y_f = df.iloc[:, 3] 
 
    # binarize EVRS 
    if binarizing: 
        y_m = binarize(y_m) 
        y_f = binarize(y_f) 
    return X, y_f, y_m 
 
 
### CREATE DATA SET FOR THE OWN PREDICTIVE MODEL ### 
 
def create_own_pred_xm_xf_ym_yf(df, binarizing=True): 
    """create X, y_f and y_m from a df / 
    return => X, y_f, y_m""" 
 
    columns_index = list(range(1, 2)) + \ 
                    list(range(4, len(df.columns))) 
 
    # for m 
    X_m = df.loc[df["label"] == "m"] 
    y_m = X_m.iloc[:, 2] 
    X_m = X_m.iloc[:, columns_index] 
    X_m = X_m.iloc[:, 1:] 
 
    # for f 
    X_f = df.loc[df["label"] == "f"] 
    y_f = X_f.iloc[:, 3] 
    X_f = X_f.iloc[:, columns_index] 
    X_f = X_f.iloc[:, 1:] 
 
    # binarize EVRS 
    if binarizing: 
        y_m = binarize(y_m) 
        y_f = binarize(y_f) 
    return X_m, X_f, y_m, y_f 
 
 
### CREATE DATA SET FOR THE CROSSED PREDICTIVE MODEL ### 
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def create_cross_pred_xm_xf_ymxf_yfxm(df, binarizing=True): 
    """create X, y_f and y_m from a df / 
    return => X, y_f, y_m""" 
 
    columns_index = list(range(1, 2)) + \ 
                    list(range(4, len(df.columns))) 
 
    # for m 
    X_m = df.loc[df["label"] == "m"] 
    yf_xm = X_m.iloc[:, 3] 
    X_m = X_m.iloc[:, columns_index] 
    X_m = X_m.iloc[:, 1:] 
 
    # for f 
    X_f = df.loc[df["label"] == "f"] 
    ym_xf = X_f.iloc[:, 2] 
    X_f = X_f.iloc[:, columns_index] 
    X_f = X_f.iloc[:, 1:] 
 
    # binarize EVRS 
    if binarizing: 
        ym_xf = binarize(ym_xf) 
        yf_xm = binarize(yf_xm) 
    return X_m, X_f, ym_xf, yf_xm 
 
 
### MACHINE LEARNING MODELS ### 
 
# Balanced Random Forest Classifier 
def BRFC(xtrain_m, xtrain_f, ytrain_m, ytrain_f, 
         xtest_m, xtest_f, ytest_m, ytest_f): 
    """Balanced Random Forest Classificatier / 
    return : bal_accuracy_m, cm_m, bal_accuracy_f, cm_f""" 
 
    # importing the library 
    from imblearn.ensemble import BalancedRandomForestClassifier 
 
    # creating and training the model 
    clf_m = BalancedRandomForestClassifier() 
    clf_f = BalancedRandomForestClassifier() 
    clf_m.fit(xtrain_m, ytrain_m) 
    clf_f.fit(xtrain_f, ytrain_f) 
 
    # Accuracy using : balanced_accuracy_score and confusion_matrix 
    from sklearn.metrics import balanced_accuracy_score, confusion_matrix 
 
    # for men 
    y_pred_m = clf_m.predict(xtest_m) 
    y_pred_m = [i for i in y_pred_m] 
    y_test_m = ytest_m.tolist() 
    bal_accuracy_m = \ 
        balanced_accuracy_score(y_true=y_test_m, y_pred=y_pred_m) 
    tn_m, fp_m, fn_m, tp_m = \ 
        confusion_matrix(y_true=y_test_m, y_pred=y_pred_m).ravel() 
 
    # for women 
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    y_pred_f = clf_m.predict(xtest_f) 
    y_pred_f = [i for i in y_pred_f] 
    y_test_f = ytest_f.tolist() 
    bal_accuracy_f = \ 
        balanced_accuracy_score(y_true=y_test_f, y_pred=y_pred_f) 
    tn_f, fp_f, fn_f, tp_f = \ 
        confusion_matrix(y_true=y_test_f, y_pred=y_pred_f).ravel() 
 
    return bal_accuracy_m, tn_m, fp_m, fn_m, tp_m, \ 
           bal_accuracy_f, tn_f, fp_f, fn_f, tp_f 
 
 
# Support Vector Machine Classifier 
def SVC_KERNEL(xtrain_m, xtrain_f, ytrain_m, ytrain_f, 
               xtest_m, xtest_f, ytest_m, ytest_f): 
    """Support Vector Machine Classifier / 
    return : bal_accuracy_m, cm_m, bal_accuracy_f, cm_f""" 
 
    # importing the library 
    from sklearn.svm import SVC 
 
    # creating and training the model 
    clf_m = SVC(kernel='rbf') 
    clf_f = SVC(kernel='rbf') 
    clf_m.fit(xtrain_m, ytrain_m) 
    clf_f.fit(xtrain_f, ytrain_f) 
 
    # Accuracy using : balanced_accuracy_score and confusion_matrix 
    from sklearn.metrics import balanced_accuracy_score, confusion_matrix 
 
    # for men 
    y_pred_m = clf_m.predict(xtest_m) 
    y_pred_m = [i for i in y_pred_m] 
    y_test_m = ytest_m.tolist() 
    bal_accuracy_m = \ 
        balanced_accuracy_score(y_true=y_test_m, y_pred=y_pred_m) 
    tn_m, fp_m, fn_m, tp_m = \ 
        confusion_matrix(y_true=y_test_m, y_pred=y_pred_m).ravel() 
 
    # for women 
    y_pred_f = clf_m.predict(xtest_f) 
    y_pred_f = [i for i in y_pred_f] 
    y_test_f = ytest_f.tolist() 
    bal_accuracy_f = \ 
        balanced_accuracy_score(y_true=y_test_f, y_pred=y_pred_f) 
    tn_f, fp_f, fn_f, tp_f = \ 
        confusion_matrix(y_true=y_test_f, y_pred=y_pred_f).ravel() 
 
    return bal_accuracy_m, tn_m, fp_m, fn_m, tp_m, \ 
           bal_accuracy_f, tn_f, fp_f, fn_f, tp_f 
 
 
# K-Nearest Neighbors Classifier 
def KNC(xtrain_m, xtrain_f, ytrain_m, ytrain_f, 
        xtest_m, xtest_f, ytest_m, ytest_f): 
    """K-Nearest Neighbors Classifier / 
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    return : bal_accuracy_m, cm_m, bal_accuracy_f, cm_f""" 
 
    # importing the library 
    from sklearn.neighbors import KNeighborsClassifier 
 
    # creating and training the model 
    clf_m = KNeighborsClassifier() 
    clf_f = KNeighborsClassifier() 
    clf_m.fit(xtrain_m, ytrain_m) 
    clf_f.fit(xtrain_f, ytrain_f) 
 
    # Accuracy using : balanced_accuracy_score and confusion_matrix 
    from sklearn.metrics import balanced_accuracy_score, confusion_matrix 
 
    # for m 
    y_pred_m = clf_m.predict(xtest_m) 
    y_pred_m = [i for i in y_pred_m] 
    y_test_m = ytest_m.tolist() 
    bal_accuracy_m = \ 
        balanced_accuracy_score(y_true=y_test_m, y_pred=y_pred_m) 
    tn_m, fp_m, fn_m, tp_m = \ 
        confusion_matrix(y_true=y_test_m, y_pred=y_pred_m).ravel() 
 
    # for f 
    y_pred_f = clf_m.predict(xtest_f) 
    y_pred_f = [i for i in y_pred_f] 
    y_test_f = ytest_f.tolist() 
    bal_accuracy_f = \ 
        balanced_accuracy_score(y_true=y_test_f, y_pred=y_pred_f) 
    tn_f, fp_f, fn_f, tp_f = \ 
        confusion_matrix(y_true=y_test_f, y_pred=y_pred_f).ravel() 
 
    return bal_accuracy_m, tn_m, fp_m, fn_m, tp_m, \ 
           bal_accuracy_f, tn_f, fp_f, fn_f, tp_f 
 
 
### SUBSAMPLING ### 
def subsampling_data_set(): 
    # see Annex 5 
 
 
### FUNCTION FRAMING THE USE OF MACHINE LEARNING MODELS 
 
def draw(): 
 
    # select the feature set 
    for col in [ALL, PITCH, SPECTRAL, DURATIONAL, LOUDNESS]: 
 
        # print the selected feature set 
        if col == PITCH: 
            print("Features = PITCH") 
        elif col == DURATIONAL: 
            print("Features = DURATIONAL") 
        elif col == LOUDNESS: 
            print("Features = LOUDNESS") 
        elif col == SPECTRAL: 
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            print("Features = SPECTRAL") 
        elif col == ALL: 
            print("Features = ALL") 
        else: 
            print("OOPS!! AN ERROR OCCURED... hmmmm....") 
        print("\n") 
 
        # selecting a predictive model 
        for prediction in ["MIXED", "OWN", "CROSSED"]: 
            PREDICTIONS = prediction 
 
            # print the selected predictive model 
            print(f"{PREDICTIONS} predictions\n") 
 
            # reset lists for balanced accuracy 
            # and confusion matrix 
            bal_accuracy_mean_m = [] 
            tn_m_total = 0 
            fp_m_total = 0 
            fn_m_total = 0 
            tp_m_total = 0 
 
            bal_accuracy_mean_f = [] 
            tn_f_total = 0 
            fp_f_total = 0 
            fn_f_total = 0 
            tp_f_total = 0 
 
            # keeping track of the time processing 
            new_time_start = datetime.now() 
 
            # for loop for draws 
            for i in range(NUM_DRAWS): 
 
        # subsampling : taking n talk turns randomly from every csv files 
                subsample = \ 
           subsampling_data_set(num_iterations_trough_all=NUM_ITERATIONS, 
                                         columns_names_list=col, 
                                         only_neg=ONLY_NEG,  
                                         only_pos=ONLY_POS) 
 
                if PREDICTIONS == "MIXED": 
                    # creating X and y 
                    # mixed prediction example for men 
                    # --> xm + ym --> ym or yf 
                    # and transforming m => 0 and f => 1 
                    X, y_f, y_m = create_x_yf_ym_mixed(df=subsample, 
                                                       binarizing=True) 
                    # splitting the data_set -> mixed 
                    X_f_train, X_f_test, y_f_train, y_f_test = \ 
                        train_test_split(X, y_f,test_size=RATIO_TEST_SET) 
                    X_m_train, X_m_test, y_m_train, y_m_test = \ 
                        train_test_split(X, y_m,test_size=RATIO_TEST_SET) 
 
                elif PREDICTIONS == "OWN": 
                    # creating X and y 
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                    # own prediction example for men : xm --> ym 
                    X_m, X_f, y_m, y_f = \ 
                        create_own_pred_xm_xf_ym_yf(df=subsample, 
                                                    binarizing=True) 
                    # splitting the data_set -> own 
                    X_f_train, X_f_test, y_f_train, y_f_test = \ 
                       train_test_split(X_f,y_f,test_size=RATIO_TEST_SET) 
                    X_m_train, X_m_test, y_m_train, y_m_test = \ 
                       train_test_split(X_m,y_m,test_size=RATIO_TEST_SET) 
 
                elif PREDICTIONS == "CROSSED": 
                    # creating X and y 
                    # crossed prediction example : xm --> yf 
                    X_m, X_f, ym_xf, yf_xm = \ 
                        create_cross_pred_xm_xf_ymxf_yfxm(df=subsample, 
                                                         binarizing=True) 
                    # splitting the data_set 
                    # -> y_m = ym_xf and y_f = yf_xm 
                    X_f_train, X_f_test, y_f_train, y_f_test = \ 
                     train_test_split(X_f,ym_xf,test_size=RATIO_TEST_SET) 
                    X_m_train, X_m_test, y_m_train, y_m_test = \ 
                     train_test_split(X_m,yf_xm,test_size=RATIO_TEST_SET) 
 
                # creating and training the model 
                bal_accuracy_m, tn_m, fp_m, fn_m, tp_m, \ 
                bal_accuracy_f, tn_f, fp_f, fn_f, tp_f = \ 
                    MACHINE LEARNING MODEL( 
                        xtrain_m=X_m_train, 
                        xtrain_f=X_f_train, 
                        ytrain_m=y_m_train, 
                        ytrain_f=y_f_train, 
                        xtest_m=X_m_test, 
                        xtest_f=X_f_test, 
                        ytest_m=y_m_test, 
                        ytest_f=y_f_test 
                ) 
 
                # adding the balanced accuracy to the list 
                # and actualizing the confusion matrix 
                bal_accuracy_mean_m.append(bal_accuracy_m) 
                tn_m_total += tn_m 
                fp_m_total += fp_m 
                fn_m_total += fn_m 
                tp_m_total += tp_m 
                bal_accuracy_mean_f.append(bal_accuracy_f) 
                tn_f_total += tn_f 
                fp_f_total += fp_f 
                fn_f_total += fn_f 
                tp_f_total += tp_f 
 
                # printing a report for each draw (optional) 
                print(f"Accuracies for the draw n° {i + 1}/{NUM_DRAWS}") 
                print(f"for m : bal_accuracy = {bal_accuracy_m} \n" 
                      f"and confusion_matrix (tn, fp, fn, tp) = " 
                      f"{tn_m, fp_m, fn_m, tp_m}") 
                print(f"for f : bal_accuracy = {bal_accuracy_f} \n" 
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                      f"and confusion_matrix (tn, fp, fn, tp) = " 
                      f"{tn_f, fp_f, fn_f, tp_f}\n") 
 
            # keeping track on all final balanced accuracies scores 
            print("balanced accuracies for m") 
            print(bal_accuracy_mean_m) 
            print("balanced accuracies for f") 
            print(bal_accuracy_mean_f) 
 
            # final results for the selected model after 100 draws 
            # => mean, standard deviations and confusion matrix 
            print("\nFINAL RESULTS") 
            print("for m") 
            print(f"mean of bal_accuracies = " 
                  f"{statistics.mean(bal_accuracy_mean_m)}") 
            print(f"standard deviation of bal_accuracies = " 
                  f"{statistics.stdev(bal_accuracy_mean_m)}") 
            print(f"total confusion_matrix (tn, fp, fn, tp) = " 
                  f"{tn_m_total, fp_m_total, fn_m_total, tp_m_total}") 
            print("for f") 
            print(f"mean of bal_accuracies = " 
                  f"{statistics.mean(bal_accuracy_mean_f)}") 
            print(f"standard deviation of bal_accuracies = " 
                  f"{statistics.stdev(bal_accuracy_mean_f)}") 
            print(f"total confusion_matrix (tn, fp, fn, tp) = " 
                  f"{tn_f_total, fp_f_total, fn_f_total, tp_f_total}") 
            print("\n") 
 
 
### SETTING UP PARAMETERS ### 
 
# number of draws 
NUM_DRAWS = 100 
 
# list of number of iterations randomly chosen from each file 
LIST_NUM_ITERATIONS = [10, 20, 30] 
 
# test / training sets ratio 
RATIO_TEST_SET = 0.25 
 
 
### LUNCH SCRIPT ### 
 
#To keep track of the time 
format_time = "%H:%M:%S" 
current_time_start = datetime.now() 
print(f"All process starts at : 
{current_time_start.strftime(format_time)}\n") 
###### 
 
print(f"NAME OF THE MACHINE LEARNING MODEL\n") 
print(f"n° of draws = {NUM_DRAWS}") 
print(f"Test set ratio = {RATIO_TEST_SET}") 
 
# for loop for each number of iterations 
for a in LIST_NUM_ITERATIONS: 
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    print("++++++++++++++++++++++++++++++\n") 
    NUM_ITERATIONS = a 
 
    # printing the number of iterations selected 
    print(f"n° of talk turns taken from each file = " 
          f"{NUM_ITERATIONS}\n") 
 
    # for loop for each type of discussion 
    # (positive, negative or all) 
    for discussion in [1, 2, 3]: 
       if discussion == 1: 
           ONLY_NEG = False 
           ONLY_POS = True 
           print("++++++++++++++++++++++++++++++\n") 
           print("Only with positive discussions") 
       elif discussion == 2: 
           ONLY_NEG = True 
           ONLY_POS = False 
           print("++++++++++++++++++++++++++++++\n") 
           print("Only with negative discussions") 
       elif discussion == 3: 
           ONLY_NEG = False 
           ONLY_POS = False 
           print("++++++++++++++++++++++++++++++\n") 
           print("All discussions") 
 
       # lunch the 100 draws for the selected model 
       draw() 
 
 
# to keep track on time 
current_time_end = datetime.now() 
print(f"All process ends at : 
{current_time_end.strftime(format_time)}\n") 
total_time_process = current_time_end - current_time_start 
print(f"\nAll process finished after: {total_time_process}") 
 


