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Abstract:	
	
Introduction:	In	supramaximal	exercises	such	as	repeated	sprinting	(RSA),	neuromuscular	fatigue	can	

lead	to	reduced	power	output	even	though	the	task	may	be	sustained.	It	is	known	that	fatigue	can	be	

related	to	central	(neural)	or	peripheral	(muscle)	alterations	depending	upon	the	task.	However,	

fatigue	may	appear	prematurely	in	hostile	environments	such	as	hypoxia	or	under	restricted	blood	

flow	(BFR)	(Amann	et	al.,	2006).	The	induced	ischemia	during	BFR	creates	a	local	hypoxic	

environment,	which	affects	intramuscular	function	and	motor	unit	recruitment	thus	exacerbating	

fatigue	(Scott	et	al.,	2014).	To	the	best	of	our	knowledge,	no	previous	research	has	investigated	the	

effect	of	BFR	and	hypoxia	on	neuromuscular	fatigue	during	repeated	sprints,	which	was	therefore	the	

aim	of	the	current	study.		

Methods:	Eleven	athletes	(6	men;	5	women)	(26.7±4.2	yrs;	68.0±14.0	kg;	172±12	cm)	participated	in	

the	study	including	one	familiarization	session	followed	by	nine	experimental	trials	(0%,	45%,	

60%BFR;	and	400m,	2000m,	3800m	simulated	altitude,	respectively).	Subjects	were	familiarized	with	

neuromuscular	stimulation	and	maximal	voluntary	contraction	(MVC).	Each	test	session	included	RSA	

until	exhaustion	with	the	assessment	of	MVC,	central	activation	(twitch	interpolation	technique),	as	

well	as	electrical	evoked	force	at	rest	(twitch)	and	doublet	at	frequencies	of	10Hz	(P10)	and	100Hz	

(P100)	pre-	and	post-RSA.	Power	output	was	obtained	during	RSA.	Two	way	repeated	measures	

ANOVA	were	performed	to	assess	differences	pre-	to	post-	(condition	x	time)	and	between	conditions	

(hypoxia	x	occlusion)	with	Bonferroni	post-hoc	test	(p<0.05).		

Results:	Voluntary	activation	level	(VAL)	decreased	pre-	to	post-	at	60%BFR	independent	of	altitude	

(by	15.6,	17.2,	and	16.2	%	at	400m,	2000m,	and	3800m,	respectively,	P<0.001).		Additionally,	a	7.1%	

decrease	(P<0.05)	was	observed	in	45%BFR-3800m.	The	normalization	of	RMS	by	the	M-wave	also	

decreased	(P<0.001)	at	post	in	60%BFR	independent	of	altitude	(by	36.2%,	43.4%,	and	41.5%).	The	

P10,	P100,	P10/P100,	and	twitch	decreased	pre-	to	post-	(P<0.001)	across	all	conditions.	Specifically,	

there	was	a	difference	with	increased	hypoxia	for	P10	(P<0.05),	P100	(P<0.01)	and	twitch	(P<0.05).	In	

addition,	the	difference	with	increased	occlusion	was	demonstrated	for	P100	(P<0.01)	and	twitch	

(P<0.05).	Power	output	decreased	throughout	all	conditions	with	an	effect	of	hypoxia	and	occlusion	

(P<0.001).	

Discussion:	Indeed,	the	RSA-induced	central	and	peripheral	fatigue	parameters	were	different	across	

conditions.	Previous	research	has	suggested	that	peripheral	fatigue	is	closely	controlled	during	

exercise,	meaning	that	central	motor	drive	and	thus	performance	(power	output)	may	be	self-

regulated	to	prevent	muscle	fatigue	from	rising	above	a	tolerated	level	(Gandevia,	2001).	Accordingly,	

in	the	current	study,	the	peripheral	factors	(P10,	P100,	and	twitch)	were	affected	in	all	conditions,	

while	the	central	factors	(VAL	and	RMS/M)	were	affected	solely	by	60%BFR	conditions	independent	of	

altitude.	Thus,	central	drive	seems	to	be	more	affected	by	higher	levels	of	occlusion	than	hypoxia,	

even	when	peripheral	fatigue	occurs.	
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1.	INTRODUCTION	

1.1	The	neuromuscular	fatigue	
	
Muscle	fatigue	is	a	multifactorial,	complex,	and	reversible	phenomenon	that	can	be	defined	

as	 an	 exercise-induced	 decrease	 in	 maximal	 force	 production	 or	 an	 inability	 to	 sustain	

further	 exercise	 at	 a	 required	 force	 (Gandevia,	 2001).	 Regarding	 this	 definition,	 one	may	

interpret	 that	 fatigue	 is	 delayed	 and	 appears	 only	 after	 a	 protracted	 period	 of	 exercise.	

However,	 modifications	 occur	 as	 soon	 as	 the	 effort	 begins,	 even	 if	 the	 physiological	

mechanisms	 underlying	 fatigue	 may	 not	 always	 be	 detected	 at	 the	 onset	 of	 exercise	

(Bigland-Ritchie	and	Woods,	1984).	Apparition	of	fatigue	is	common	in	all	types	of	exercise	

and	 thus	occurs	 in	both	 low	 intensity	as	well	as	high	 intensity	exercise.	 Likewise,	different	

origins	of	fatigue	may	occur	according	to	these	modalities,	which	are	also	dependent	on	the	

duration	of	exercise	(Millet	and	Lepers,	2004).	

Many	models	have	been	proposed	(physiological,	biochemical,	psychological,	biomechanical,	

and	 neurological)	 in	 order	 to	 explain	 fatigue,	 whereas	 some	 others	 have	 characterized	

fatigue	as	an	 interaction	of	 central	 and	peripheral	processes	 (Allen	et	 al.,	 2008;	Gandevia,	

2001).	Hence,	fatigue	does	not	only	occur	within	the	muscles.	Degradation	of	performance	

may	be	attributed	to	the	failure	of	both	muscle	and	neural	components	and	therefore	to	the	

neuromuscular	 system.	 The	 latter,	 as	 represented	 in	 Figure	 1	 below,	 shows	 the	 different	

sites	where	alterations	can	occur	that	can	affect	fatigue.	

	
	

Figure	1.	The	neuromuscular	system	(Bigland-Ritchie,	1985)	
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The	 neuromuscular	 system	 distinguishes	 central	 and	 peripheral	 mechanisms	 underlying	

fatigue	with	the	neuromuscular	 junction	as	the	communication	site	(synapse)	between	the	

nerve	(motor	neuron)	and	the	muscle.	Peripheral	fatigue	is	defined	as	fatigue	produced	by	

changes	at	or	distal	to	the	neuromuscular	junction,	whereas	central	fatigue	is	a	progressive	

reduction	in	voluntary	activation	of	muscle	during	exercise	(Gandevia,	2001)	due	to	failure	of	

the	central	nervous	system	(CNS)	to	excite	or	drive	motoneurons	adequately	(Goodall	et	al.,	

2012).	 Despite	 the	 complexity	 of	 this	 system,	 the	 determination	 of	 the	 origin	 of	 fatigue	

(central	versus	peripheral)	is	possible.	Moreover,	spinal	or	supraspinal	origination	of	central	

fatigue	may	be	distinguished	depending	on	the	technique	of	investigation	used.	Specifically,	

the	 assessment	 of	 the	 peripheral	 component	 is	 usually	 distinguished	 by	 stimulating	 the	

motor	 nerve	 (neurostimulation)	 in	 a	 relaxed	 muscle	 state	 (Millet	 et	 al.,	 2011),	 although	

muscle	 stimulation	 (myostimulation)	 and	 magnetic	 stimulation	 are	 also	 widely	 used	

techniques.	 Comparisons	 pre-	 and	 post-exercise	 in	 parameters	 such	 as	 peak	 twitch	

(mechanical	response	to	a	stimulation),	M-wave	(electrical	response	to	the	stimulation)	and	

force	evoked	at	different	 frequencies	 (usually	10	Hz	and	100	Hz)	 can	 reflect	perturbations	

downstream	 of	 the	 neuromuscular	 junction.	 On	 the	 other	 side,	 central	 fatigue	 can	 be	

examined	 by	 assessing	 two	 parameters:	 the	 voluntary	 activation	 level	 (VAL)	 and	 ratio	

RMS/M	 (root	mean	 square	 (RMS)	 of	 the	 amplitude	 of	muscle	 activation/M-wave	 (M)),	 in	

order	 to	 provide	 information	 about	 neural	 alterations	 upstream	 to	 the	 neuromuscular	

junction.	 The	 gold	 standard	 to	 assess	VAL	 is	 the	 twitch	 interpolation	 technique	 (TIT)	 from	

Merton	 (Merton,	 1954)	 that	 consists	 in	 superimposing	 a	 twitch	 or	 high	 frequency	

stimulation	(generally	80-100	Hz)	during	a	maximal	voluntary	(isometric)	contraction	(MVC),	

and	comparing	the	superimposed	response	to	the	same	potentiated	response	evoked	on	the	

relaxed	muscle	 (Allen	 et	 al.,	 1995).	 The	 use	 of	 high	 frequency	 potentiated	 stimulations	 is	

now	 usually	 recommended	 (Duchateau,	 2009;	 Place	 et	 al.,	 2007),	 although	 the	 level	 of	

discomfort	 and	 pain	 is	 greater	 with	 this	 type	 of	 stimulation	 (Bampouras	 et	 al.,	 2012).	

Furthermore,	 the	 ratio	 RMS/M	 corresponds	 to	 the	 root	 mean	 square	 of	 the	 maximal	

response	 in	 the	amplitude	of	muscle	activation	via	electromyography	(EMG)	during	a	MVC	

and	normalized	by	the	amplitude	of	the	M-wave.	Although	larger	variations	of	measurement	

have	been	 found	 for	 this	 ratio	 (Place	 et	 al.,	 2007),	 its	 use	 allows	 individual	 assessment	 of	

muscles	or	muscle	groups,	in	opposite	of	TIT.	However,	these	two	central	parameters	do	not	

allow	insight	to	determine	if	the	distinction	of	fatigue	is	from	a	spinal	or	supraspinal	origin.	

Figure	2	displays	the	different	anatomical	locations	linked	with	the	potential	mechanisms	of	

fatigue	and	their	assessment	techniques.		
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The	 apparition	 and	 degree	 of	 fatigue	 are	 closely	 related	 to	 the	 task	 (Enoka,	 1995)	 and	

alterations	of	the	neuromuscular	system	are	thus	specific	to	exercise	and	its	modalities.	

In	 team	and	 intermittent	 sports	 (i.e,	 tennis,	 soccer,	 hockey,	 etc.),	 athletes	 are	 required	 to	

produce	repeated	short	bouts	of	exercise	(<30sec)	at	high	intensities	interspersed	with	brief	

recovery	periods	(<60sec)	over	an	extended	period	of	time	(1-4	hours)	(Bangsbo	et	al.,	1991;	

Bishop	 et	 al.,	 2001;	Manrique	&	González-Badillo,	 2003;	 Faude	 et	 al.,	 2007;	 Girard,	 2011;	

Girard	 &	 Millet,	 2008;	 Glaister,	 2005;	 Spencer	 et	 al.,	 2005).	 Although	 sprinting	 activity	

represents	 a	 relatively	 short	 duration	 of	 a	 total	 game	 (1-3%	 of	 effective	 playing	 time)	

(Spencer	et	al.,	2005;	Spencer	et	al.,	2004),	 it	 is	estimated	that	intense	periods	of	sprinting	

activity	 may	 determine	 the	 outcome	 of	 a	 game,	 and	 thus	 influence	 the	 ability	 to	 win	

possession	 of	 the	 ball	 or	 to	 concede	 goals	 (Trapattoni,	 1999).	 Furthermore,	 reductions	 in	

sprinting	speed	and	high	speed	running	actions,	which	can	potentially	affect	the	game,	have	

been	observed	during	elite	soccer	matches	in	men	and	women	(Krustrup	et	al.,	2005;	Mohr	

et	al.,	2003).	The	improvement	of	repeated	sprint	ability	(RSA)	may	therefore	be	effective	to	

improve	performance	during	a	game.	

Figure	2.	Potential	mechanisms	of	fatigue	linked	to	their	anatomical	location	and	their	assessment	techniques	(adapted	
from	Girard	&	Millet,	2008)	
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1.2	Fatigue	in	repeated	sprints	
	

In	repeated	sprints,	fatigue	manifests	as	a	decline	in	the	maximal	sprinting	speed	(running)	

or	a	reduction	 in	peak	power	 (cycling)	or	 total	work	over	sprint	repetitions	(Bishop,	2012).	

Fatigue	can	be	evaluated	through	the	comparison	of	“Pre	and	Post	exercise”	status,	during	

the	task	with	the	collection	of	the	EMG	muscle	activation	as	well	as	via	fatigue	index	(FI)	or	

percentage	decrement	score	(Sdec).	This	indicates	the	ability	to	resist	fatigue	during	repeated	

sprints	 (Girard	et	al.,	2011).	Finally,	other	 indices	such	as	mechanical	work	and	sprint	 time	

can	 be	 useful	 in	 combination	 with	 the	 previous	 indices	 to	 assess	 RSA	 performance	 and	

fatigue.	

Muscle	 excitability,	 limitation	 of	 energy	 supply	 as	 well	 as	 metabolites	 accumulation	 have	

been	 listed	as	 limiting	muscular	 factors	 in	RSA	 (Girard	et	al.,	2011).	With	regard	to	muscle	

excitability,	 ionic	disturbances	have	been	observed	 following	 intense	dynamic	contractions	

and	linked	to	decreases	in	sodium	(Na+)/potassium	(K+)-adenosine	triphosphatase	(ATPase)	

activity	 (Clausen	 et	 al.,	 1998).	 Indeed	 Juel	 et	 al.	 (2000)	 showed	 that	 during	 one	 leg	 knee	

extensor	exercise,	concentration	of	potassium	(K+)	outside	of	muscle	cells	was	exacerbated	

(at	 least	 doubled),	 potentially	 due	 to	 a	 failure	 of	 the	 sodium/potassium	 pump	 (Na+/K+	

pump).	 These	 modifications,	 including	 an	 accumulation	 of	 extracellular	 K+,	 impair	 cell	

membrane	excitability	and	diminish	the	force	development.	It	is,	however,	necessary	to	add	

that	 most	 of	 the	 studies	 investigated	 muscle	 excitability	 in	 in	 vitro	 conditions	 and	 it	 is	

therefore	 still	 unclear	 if	 RSA	 is	 affected	 by	 ionic	 disturbances.	 Additionally,	 alterations	 of	

muscle	excitability	in	RSA,	which	can	be	evaluated	by	changes	in	amplitude	of	the	M-wave,	

have	 led	 to	 contradictory	 results.	 Some	 researchers	 (Racinais	 et	 al.,	 2007)	 have	 shown	 an	

increase	of	 the	M-wave,	whereas	 some	others	have	 reported	a	 steady	 level	 (Billaut	et	 al.,	

2013;	Girard	et	al.,	2013;	Hureau	et	al.,	2015)	or	a	decrease	(Perrey	et	al.,	2010)	after	RSA.	

Further,	performance	decrement	in	RSA	has	been	associated	with	a	metabolic	accumulation,	

which	presents	 as	 a	muscular	 acidosis	 and	an	accumulation	of	 inorganic	phosphate	 (Pi)	 in	

the	muscle	tissue.	The	decrease	 in	blood	and	muscle	pH	(Ratel	et	al.,	2006;	Spencer	et	al.,	

2008)	 via	 the	 accumulation	 of	 hydrogen	 ions	 (H+),	 resulting	 from	 RSA,	 could	 have	

detrimental	 effects	 on	 the	 contractile	 apparatus,	 ATP	 production	 (derived	 from	 glycolysis)	

and	 thus	 on	 performance.	 In	 addition,	 the	 accumulation	 of	 Pi	 could	 potentially	 affect	 the	

calcium	 release	 from	 the	 sarcoplasmic	 reticulum	 and/or	 affect	 the	 myofibrillar	 calcium	

sensitivity,	inducing	a	lower	number	and/or	force	of	the	cross-bridges,	as	suggested	in	vitro	

studies	(Dutka	and	Lamb,	2004;	Westerblad	et	al.,	2002).	Finally,	the	depletion	as	well	as	the	

limitation	 of	 energy	 supply	 resynthesis	 (phosphocreatine	 (PCr))	 have	 been	 pointed	 out	 to	
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limit	 RSA.	 Although	 different	 metabolisms	 (ATP-PCr,	 anaerobic	 glycolysis,	 aerobic	

metabolism)	 supply	 energy,	 the	 resynthesis	 of	 PCr	 has	 been	 established	 as	 a	 potentially	

major	determinant	of	RSA	(Mendez-Villanueva	et	al.,	2012).		

Besides	 these	 muscular	 limiting	 factors,	 neural	 alterations	 (reduction	 in	 neural	 drive	 and	

muscle	activation)	have	been	shown	in	several	studies	(Kinugasa	et	al.,	2004;	Racinais	et	al.,	

2007)	while	others	reported	a	steady	level	of	neural	activation	(Billaut	et	al.,	2005;	Hautier	

et	al.,	2000)	during	RSA.	To	illustrate	this	point,	Racinais	et	al.	(2007)	reported		in	addition	to	

the	peak	power	output	decrement,	 a	decrease	of	 16.5%	 in	maximal	 voluntary	 contraction	

(MVC)	 following	10	 cycling	 sprints	of	 6	 seconds	 interspersed	with	30	 seconds	of	 recovery.	

Furthermore,	 and	 despite	 an	 increment	 of	 the	 M-wave	 amplitude	 (+13.7%),	 researchers	

noted	 a	 decrease	 in	 the	 peak	 twitch	 force	 production	 (-9%),	 a	 decrease	 of	 3%	 of	 the	

voluntary	activation	level	(VAL)	assessed	with	TIT,	and	a	decrement	of	14.5%	of	the	RMS/M-

wave	 ratio.	 These	 results	 show	alterations	at	 the	peripheral	 as	well	 as	at	 the	 central	 level	

following	10	x	6s	cycling	sprints.	In	another	study,	Mendez-Villanueva	et	al.	(2008)	reported	

a	 decrease	 of	 14.6%	 (±6.3%)	 in	 the	 amplitude	 of	 the	 surface	 EMG	 activity	 of	 the	 vastus	

lateralis	in	a	set	of	10	cycling	sprints	(6	seconds	sprint/30	seconds	recovery).	Authors	related	

this	reduction	in	EMG	activity	to	the	progressive	inhibition	of	motor	units	and/or	decrease	in	

motor	units	firing	rate	and	also	to	peripheral	alterations,	though	specifying	the	impossibility	

to	distinguish	the	precise	mechanism	underlying	the	results	due	to	the	use	of	surface	EMG.	

In	 addition,	Hureau	 et	 al.	 (2015)	 recently	 investigated	 the	 development	 of	 peripheral	 and	

central	 fatigue	 during	 cycling	 sprints.	 Twelve	 males	 performed	 on	 different	 days	 the	

following	 tests:	 1,	 4,	 6,	 8,	 10	 x	10s	 sprints	with	30s	of	passive	 recovery	as	well	 as	8	 x	10s	

sprints	with	10s	passive	recovery.	Researchers	demonstrated	a	gradual	reduction	 in	power	

output	 (-25	 ±	 7%)	 as	well	 as	 in	 peripheral	 and	 central	 indices	 (Twitch	 =	 -47±11%;	 VAL	 =	 -

11±6%)	 from	 the	 first	 to	 the	 sixth	 sprint.	While	 also	 reporting	no	 further	 reduction	 in	 the	

different	 indices	 when	 subsequent	 sprints	 were	 performed.	 Moreover,	 the	 10s	 recovery	

protocol	 led	 to	 a	 significant	 reduction	 in	 power	 output	 without	 additional	 effects	 of	

peripheral	and	central	fatigue.	Finally,	the	decrement	in	mechanical	output	during	repeated	

sprinting	 exercise	 has	 been	 explained	 by	 a	 combination	 of	 both	 types	 of	 fatigue.	 Authors	

have	suggested,	as	in	other	studies	(Amann	et	al.,	2009;	Amann	and	Dempsey,	2008;	Gagnon	

et	 al.,	 2012),	 that	 central	motor	 drive	was	 altered	 to	 limit	 the	 development	 of	 peripheral	

fatigue.	
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As	previously	mentioned,	the	apparition	and	the	degree	of	fatigue	can	be	affected	by	several	

factors.	 Firstly,	 the	 exercise	 mode	 (running	 versus	 cycling)	 has	 been	 reported	 to	 induce	

different	levels	of	fatigue.	Thus,	decrement	scores	are	generally	greater	in	repeated	cycling	

sprints	 (10-25%)	 when	 compared	 to	 repeated	 running	 sprints	 (5-15%)	 (Rampinini	 et	 al.,	

2014)	 implying	 a	 task	 dependency	 of	 fatigue	 (Enoka,	 1995).	 The	 time	 of	 the	 day	 has	 also	

been	investigated	(Giacomoni	et	al.,	2006;	Racinais	et	al.,	2010,	2005),	such	that	afternoon	

performance	 has	 been	 reported	 to	 induce	 sharper	 decreases	 in	 performance.	 This	 was	

suggested	 to	 be	 related	 to	 an	 improved	muscle	 power	 in	 the	 afternoon	 compared	 to	 the	

morning	 with	 an	 enhancement	 of	 the	 first	 sprint	 and	 thus	 a	 greater	 fatigue	 index.	

Anthropometric	factors	(sex,	age	and	training	status)	also	have	an	impact	on	fatigue,	as	well	

as	 distribution	 of	 work/recovery	 periods	 and	 the	 environment	 in	 which	 exercise	 is	

performed.	 Regarding	 the	 latter,	 fatigue	may	 appear	 prematurely	 in	 hostile	 environments	

such	as	in	hypoxia	or	under	restricted	blood	flow	(BFR)	(Amann	et	al.,	2006).		

1.3	Fatigue	in	hypoxia	
	

Training	in	altitude	has	increased	in	popularity	over	the	years	and	the	development	of	new	

training	 methods	 has	 emerged	 (Figure	 3).	 Even	 if	 the	 use	 of	 altitude	 training	 was	

predominantly	 targeting	 endurance	 sports	 (live	 high-train	 high/low)	 in	 the	 beginning,	 the	

development	of	new	 innovative	training	methods	such	as	repeated	sprint	 in	hypoxia	 (RSH)	

makes	hypoxic	training	beneficial	for	several	sports,	including	team	and	intermittent	sports.	

It	 is	 important	 to	noticed	however,	 that	 the	use	of	artificial	altitude	 (normobaric	hypoxia),	

which	 can	be	obtained	by	 reducing	 the	 fraction	of	oxygen	 via	 addition	of	nitrogen	 (N2)	 or	

extraction	 of	 oxygen	 molecules	 without	 modifying	 the	 barometric	 pressure,	 has	 been	

reported	 to	 induce	 different	 physiological	 responses	 (Millet	 et	 al.,	 2012)	 compared	 to	

hypobaric	hypoxia	(real	altitude).	Hypobaric	hypoxia	consists	of	a	same	fraction	of	oxygen	in	

the	air	but	with	a	reduction	of	the	barometric	pressure.	

Specifically,	 the	 benefits	 of	 RSH	 compared	 to	 the	 same	 training	 in	 normoxia	 have	 been	

previously	demonstrated	by	several	studies	(Brocherie	et	al.,	2015;	Faiss	et	al.,	2013;	Galvin	

et	al.,	2013;	Puype	et	al.,	2013;		Faiss	et	al.,	2015),	while	another	did	not	(Goods	et	al.,	2015).	

Faiss	et	al.	(2013)	reported	that	performance	in	RSA	cycling	was	improved	after	RSH	training	

(increased	number	of	sprints	before	failure)	although	no	difference	in	peak	power	between	

the	 groups	 was	 observed.	 According	 to	 these	 authors,	 RSH	 led	 to	 specific	 molecular	

adaptations	as	well	as	 increased	variations	of	blood	perfusion,	 therefore	 inducing	a	better	

clearance	 of	 waste	metabolites	 and	 thus	 delaying	 fatigue	 during	 a	 RSA	 test	 to	 ultimately	
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allow	more	sprints	to	be	performed.			

	

	

Although	 interest	 around	 RSH	 has	 grown,	 few	 studies	 have	 focused	 on	 neuromuscular	

fatigue	 in	 RSH.	 A	 general	 fatigue	 can	 be	 observed	 indirectly	 through	 greater	 decrement	

scores	in	hypoxia	than	normoxia	or	with	a	similar	comparison	in	total	work.	Morrison	et	al.		

(2015)	 compared	 the	 performance	 of	 ten	 amateur	 team-sport	 athletes	 during	 a	 repeated	

sprint	protocol	(4	sets	of	4,	4-s	running	sprints)	in	normobaric	normoxia	(FiO2=20.9%)	versus	

normobaric	 hypoxia	 (FiO2=14.0%).	 Researchers	 reported	 a	 lower	 peak	 speed	 and	 distance	

covered	(total	work)	when	performing	in	hypoxia	and	suggested	that	these	results	could	be	

related	to	a	reduced	arterial	oxygenation	saturation	which	could	contribute	to	fatigue	during	

RSH,	 given	 that	 PCr	 (Haseler	 et	 al.,	 1999)	 and	H+	 removal	 (Tomlin	 and	Wenger,	 2001)	 are	

oxygen	 dependent	 processes.	 In	 addition,	 Billaut	 et	 al.	 (2013)	 found	 a	 reduction	 in	

mechanical	 work	 (-8.3%)	 in	 fifteen	 5-second	 cycling	 sprints	 interspersed	 with	 25	 seconds	

recovery	in	hypoxia	(FiO2=13.8%)	when	compared	with	normoxia.	Furthermore,	researchers	

observed	a	13.7%	decrease	 in	 the	quadriceps	electromyography	 (RMSsum)	 across	 sprints	 in	

the	 hypoxic	 condition.	 The	 main	 finding	 was	 that	 cerebral	 oxygenation,	 quadriceps	

activation	 (RMS/M;	 VAL),	 and	 cycling	 performance	were	 lower	 in	 hypoxia	 than	 normoxia.	

Thus,	suggesting	a	regulation	of	the	locomotor	muscle	fatigue	development	from	the	central	

nervous	system	(CNS).	

	

	

Figure	3.	 Panorama	 of	 the	 actual	 altitude/hypoxic	 training	methods	 (LHTH	:	 Live	High	 Train	High;	 LHTL	:	 Live	
High	 Train	 Low	;	 LLTH	:	 Live	 Low	 Train	 High.	 IHE	:	 Intermittent	 Hypoxic	 Exposure	;	 CHT	:	 Continuous	 Hypoxic	
Training;	IHT	:Intermittent	Hypoxic	Training;	RSH	:	Repeated	Sprint	Training	in	Hypoxia	;	RTH:	Resistance	Training	
in	Hypoxia.	IHIT	:	Intermittent	Hypoxia	Interval-Training;	LHTLH	:	Live	High	Train	Low	and	High;	LHTHL:	Live	High	
Train	High	and	Low.	HH	:	Hypobaric	Hypoxia	;	NH	:	Normobaric	Hypoxia).	From	Millet	et	al.,	2015.	
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1.4	Fatigue	under	blood	flow	restriction	
	

A	 hypoxic	 stimulus	 can	 also	 be	 created	 with	 the	 use	 of	 a	 local	 instead	 of	 a	 systemic	

approach.	Mainly	used	 in	 resistance	training	 to	 improve	muscle	strength	and	hypertrophy,	

blood	flow	restriction	(BFR)	(also	known	as	“Kaatsu	training”)	consists	of	limiting	the	arterial	

blood	 flow	 in	 the	 muscles	 by	 applying	 a	 wrapping	 device	 or	 inflatable	 cuff.	 The	 induced	

pressure	restricts	the	arterial	blood	flow	while	simultaneously	preventing	the	venous	return.	

The	 induced	 ischemia	 during	 BFR	 creates	 a	 localized	 hypoxic	 environment,	 which	 affects	

intramuscular	function	and	classical	motor	unit	recruitment	patterns	(Scott	et	al.,	2014).	 In	

order	 to	maintain	 the	 same	 level	 of	 strength,	 subjects	 recruit	more	motor	 units	with	 low	

loads,	 which	 can	 be	 noticed	 through	 greater	 muscle	 activation	 (Yasuda	 et	 al.,	 2009).	

Moreover,	it	has	been	reported	(Takarada	et	al.,	2000b;	Yasuda	et	al.,	2005)	that	with	a	low	

intensity	 training	 (20%	of	1RM)	and	use	of	moderate	vascular	 restriction	 (100	mmHg),	 the	

effects	on	hypertrophy	and	strength	were	similar	in	both	athletes	and	patients.	

The	 exact	 underlying	 mechanisms	 remain	 elusive	 but	 gains	 in	 strength	 and	 hypertrophy	

following	BFR	have	been	associated	to	a	greater	accumulation	of	metabolites	as	well	as	an	

increase	in	intramuscular	signaling,	anabolic	hormone	concentrations,	intracellular	swelling,	

and	motor	unit	recruitment	(Scott	et	al.,	2014).	

One	of	 the	main	parameters	when	using	BFR	 is	 the	 induced	pressure.	However,	 the	 latter	

may	vary	a	lot	according	to	many	parameters	and	thus,	restriction	pressure	should	be	made	

relative	 to	 the	 individual	 and	 to	 the	 specific	 cuffs	 used	 (Jessee	 et	 al.,	 2016).	 It	 has	 been	

reported	that	the	size	and	width	of	cuffs	(Loenneke	et	al.,	2012a)	have	highly	influenced	the	

level	of	pressure	to	occlude	the	arterial	blood	flow.	Thus,	wider	cuffs	lead	to	lower	arterial	

occlusion	pressure	(AOP)	than	narrow	ones.	Likewise,	these	authors	also	reported	effects	of	

sex	 and	 race	 on	 the	 level	 of	 AOP,	 which	 highlight	 the	 need	 to	 individualize	 these	

measurements.	

The	number	of	studies	focusing	on	fatigue	in	repeated	sprints	under	BFR	is	void.	However,	

Cook	et	al.	 (2007)	 compared	 the	effect	of	nine	protocols	on	muscle	 fatigue	 (decrement	 in	

MVC)	on	21	subjects	which	consisted	of	three	sets	of	knee	extensions	performed	until	failure	

with	 90s	 recovery	 between	 sets.	 In	 that	 study,	 eight	 protocols	 included	 BFR	with	 various	

intensities	 (20	or	40%	MVC),	pressure	(~160	mmHg	or	300	mmHg),	and	occlusion	duration	

(off	during	the	rest	between	sets	or	continuously	applied).	The	ninth	condition	was	high-load	

exercise	 (80%	MVC)	without	BFR.	The	results	of	 the	previous	study	 indicated	 that	exercise	

performed	under	BFR	induced	equal	or	greater	fatigue	than	exercise	with	high	load	without	

BFR.	Indeed,	isometric	force	decreased	in	post	measurements	by	19%	(high	load	condition)	
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and	 between	 24-33%	 (depending	 BFR	 condition).	Other	 authors	 (Häkkinen	 and	 Pakarinen,	

1993)	have	demonstrated	similar	or	higher	values	(Pierce	et	al.,	2006)	of	decrement	scores	

that	 can	 be	 explained	 by	 the	 larger	 volume	 of	 the	 protocol	 (5	 versus	 3	 sets).	 In	 addition,	

Yasuda	 et	 al.	 (2009)	 found	 that	 complete	 occlusion	 led	 to	 higher	 declines	 in	 MVC	 than	

moderate	BFR	(39-48%	vs	16-19%,	respectively),	whereas	MVC	in	the	control	group	(without	

BFR)	did	not	change.	Researchers	also	reported	an	increase	of	muscle	activation	(via	EMG)	in	

moderate	and	complete	occlusion	 compared	with	 the	 control.	More	 recently,	 Fatela	et	 al.	

(2016)	 investigated	the	acute	effects	of	different	 levels	of	BFR	(40%,	60%,	80%	of	absolute	

vascular	 occlusion)	 on	 muscle	 activation	 and	 fatigue	 in	 low	 intensity	 unilateral	 knee	

extensions	 (20%	of	1-repetition	maximum)	composed	of	4	 sets	 (30+15+15+15	repetitions).	

Researchers	showed	a	5.2%	decrement	in	MVC	at	80%BFR,	as	well	as	a	decrease	in	median	

frequency	 of	 the	 VM	 and	 RF	 in	 all	 conditions	 (except	 at	 40%BFR	 for	 the	 VM),	 which	was	

majored	 at	 higher	 levels	 of	 BFR.	 In	 addition,	 an	 increment	 in	 RMS	within	 all	 sets	 in	 both	

muscles	 with	 higher	 values	 at	 80%BFR	 was	 reported.	 According	 to	 these	 findings,	

researchers	suggested	that	pressure	should	be	individualized,	as	the	neuromuscular	fatigue	

level	varies	with	the	relative	BFR	intensity.	

As	 observed	 previously,	 there	 is	 a	 lack	 of	 studies	 focusing	 on	 BFR	 combined	 with	 high	

intensity	 exercise.	 BFR	 has	 been	 used	 mainly	 in	 resistance	 training	 in	 order	 to	 develop	

strength	and	hypertrophy	as	well	as	in	low	intensity	exercise	(cycling	or	walking)	(Abe	et	al.,	

2010,	2009,	2006).	To	the	best	of	our	knowledge,	no	study	has	combined	and	investigated	

BFR	and/or	hypoxia	during	repeated	sprinting,	which	was	therefore	the	aim	of	the	current	

study.	

	The	present	study	aims	to	compare	the	neuromuscular	fatigue	in	various	levels	of	hypoxia	

and	vascular	occlusion	during	a	repeated	sprint	protocol	performed	to	exhaustion.	

We	hypothesized	that:	

	

- Peripheral	and	central	 fatigue	will	be	 induced	and	observed	 in	all	conditions,	since	

exercise	is	performed	until	exhaustion.	

- The	level	of	peripheral	fatigue	is	independent	of	the	level	of	occlusion	and	also	the	

level	of	hypoxia,	contrary	to	central	fatigue.	

- BFR	leads	to	stronger	detrimental	effect	on	central	fatigue	than	hypoxia.	
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2.	MATERIALS	AND	METHODS	

2.1	Participants	
	

Six	men	and	five	women	took	part	 in	the	study	(26.7	±	4.2	years	old;	68.0	±	14.0	kg;	172	±	

12cm).	Volunteers	needed	to	be	healthy,	actively	trained	and	aged	between	18	and	40	years	

old.	Participants	were	required	to	train	at	least	4	hours	per	week	in	endurance	activity	in	the	

legs	 (i.e.	 cycling,	 running,	 rowing,	 skiing,	 skating,	 etc.)	 and	 be	 accustomed	 to	 maximal	

intensity	exercise	 in	the	 legs	as	well	as	no	skeletal	or	muscular	 injury	 in	the	 last	3	months,	

pain,	or	other	medical	condition	that	could	affect	the	outcome	of	the	study.	

The	eleven	participants	completed	10	sessions	including	one	familiarization.	Before	the	start	

of	 the	 study,	 participants	were	 informed	about	 the	procedure	 and	 risks,	 signed	 a	 consent	

form	(Appendix	1),	and	answered	a	health	questionnaire	(Appendix	2).		

The	 study	 protocol	 was	 accepted	 by	 the	 local	 ethical	 committee	 (Commission	 cantonale	

vaudoise	d'éthique	de	la	recherche	sur	l'être	humain,	CER-VD	138/15)	on	April	21th	2015.	

2.2	Experimental	design		
	

Each	 testing	 session	 (n=9)	 took	 place	 at	 the	 “Centre	 Sport	 et	 Santé”	 in	 the	 normobaric	

hypoxic	chamber	(ATS	Altitude	Training,	Sydney,	Australia)	of	the	Institute	of	Sport	Science,	

University	of	Lausanne	(ISSUL),	Switzerland.	The	chamber	(2.4m	x	5m	x	2.5m)	allows,	via	a	

filter	and	compressor	system,	 to	extract	oxygen	molecules	and	to	reduce	the	FiO2	without	

modification	of	the	barometric	pressure.	

Participants	completed	the	trials	with	minimum	48h	rest	between	each	session	 in	order	to	

limit	an	accumulation	of	 fatigue	and	each	 trial	was	executed	at	 the	same	time	of	day	 (±	1	

hour).	

During	 the	 first	 session,	

anthropometrics	 data	 (height,	

weight,	 skin	 folds)	 were	

collected	 and	 participants	 filled	

out	and	signed	the	consent	and	

health	forms.		

The	 AOP	 (pressure	 to	 obstruct	

the	 arterial	 inflow)	 was	

determined	with	11x85cm	cuffs	
Picture	1.	Bilateral	cuffs	applied	on	proximal	thigh	during	RSA.	
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(SC10D	 Rapid	 Version	 Cuff,	 D.E.	 Hokanson	 Inc.,	 Bellevue,	 WA,	 USA)	 that	 were	 applied	

proximal	to	the	thigh	and	which	were	used	for	all	testing	sessions.	The	amount	of	pressure	

of	 the	 cuffs	 was	 progressively	 increased	 with	 an	 inflation	 system	 (E20/AG101	 Rapid	 Cuff	

Inflation	System,	D.E.	Hokanson	Inc.,	Bellevue,	WA,	USA).	Vascular	occlusion	was	assessed	on	

the	 femoral	 artery	 using	 a	 Doppler	 ultrasound	 probe	 (L	 12-5L60N,	 ClarUs	 EXT,	 Telemed	

Medical	Systems,	Milano,	Italy)	and	AOP	was	determined	when	no	more	arterial	blood	flow	

was	detected	via	Doppler	ultrasound	(EchoWave	II	3.4.4,	Telemed	Medical	Systems,	Telemed	

Ltd.	Lithuania,	Milano,	Italy).	

Participants	were	then	familiarized	with	the	assessment	of	neuromuscular	fatigue	including	

maximal	 voluntary	 contraction	 (MVC)	 as	 well	 as	 the	 twitch	 and	 stimulations	 at	 different	

frequencies	(100	Hz,	10	Hz,	twitch)	at	rest	and	during	MVC	(superimposed	100	Hz	doublet).	

Finally,	participants	were	familiarized	to	the	repeated	sprint	protocol	to	exhaustion.	

The	following	nine	testing	trials	were	performed	in	a	random	order	and	included	exercise	in	

3	 levels	 of	 normobaric	 hypoxia	 (400m,	 2000m,	 3800m;	 FiO2:	 20.4%,	 16.4%,	 12.8%	

respectively)	and	3	levels	of	BFR	based	on	the	AOP	(0%BFR,	45%BFR,	60%BFR).	

Figure	4	represents	the	entire	study	design.			

	

As	shown	above,	the	current	work	takes	place	in	a	larger	study	but	only	repeated	sprints	and	

neuromuscular	 fatigue	will	 be	 reported	here.	 Each	 session	 included	a	normalization	phase	

Figure	4.	Study	design.	Two	normalization	cycling	stages	(3	minutes	at	50W	and	3	minutes	at	100W)	were	done	twice	(outside	and	
inside	the	hypoxic	chamber)	and	were	followed	by	the	determination	of	the	optimal	intensity	of	stimulation.	A	6-minutes	
submaximal	stage	was	performed	prior	to	two	10s	sprints	interspersed	with	3	minutes	recovery.	Assessment	of	fatigue	was	
performed	PRE	and	POST	repeated	sprints	(RSA),	as	indicated	by	the	arrows.	
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consisting	of	3	minutes	of	 cycling	at	50	W	 followed	by	3	minutes	at	100	W	outside	of	 the	

hypoxic	 chamber.	 The	 same	 normalization	 was	 then	 done	 inside	 the	 chamber	 and	 was	

followed	 by	 the	 neuromuscular	 set-up	 (determination	 of	 the	 optimal	 intensity	 of	

stimulation).	 After	 a	 6-minutes	 submaximal	 stage,	 a	 warm	 up	 including	 2	 maximal	 10s	

sprints	was	performed	and	a	recovery	period	of	5	minutes	followed.	Assessment	of	fatigue	

was	 then	 performed	 Pre-	 and	 Post-RSA	 to	 exhaustion.	 In	 addition,	 blood	 lactate	 samples	

were	also	 collected	Pre-and	Post-RSA	at	 the	end	of	 the	 fatigue	assessment	with	 a	 Lactate	

Scout	(SensLab	GmbH,	Leipzig,	Germany).	

This	study	was	single-blinded	and	therefore,	participants	were	not	aware	of	any	condition	or	

any	feedback	of	performance	in	order	to	avoid	confounding	factors	and	any	pacing	strategy.	

Furthermore,	participants	were	asked	not	to	practice	any	strenuous	activity,	not	to	consume	

any	alcohol	 in	 the	24	hours	prior	 the	 testing	session	and	not	 to	consume	caffeine	3	hours	

prior	the	session.	

2.3	Repeated	Sprint	Test	
	

Participants	 performed	 a	 repeated	 sprints	 test	 to	

volitional	 exhaustion	 in	 the	 nine	 conditions	 listed	

above.	The	bike	was	set	up	and	adjusted	 for	each	

subject	 and	 for	 each	 testing	 session	 for	

reproducibility.	 Two	 warm-up	 sprints	 with	 3	

minutes	of	 recovery	 in	between	were	executed	 in	

the	condition	of	the	day	prior	the	test.	Peak	power	

of	the	best	warm-up	sprint	was	then	used	as	peak	

power	reference	for	the	RSA	test.	Subjects	needed	

to	 perform	 the	 first	 sprint	 at	 least	 at	 95%	 of	 the	

peak	 power	 of	 the	 warm-up	 sprint.	 The	 test	

consisted	 of	 10	 seconds	 maximal	 all	 out	 cycling	

sprint	 (with	 a	 torque	 factor	 of	 0.8Nm/kg)	 and	 20	

seconds	 recovery	 with	 20W	 resistance	 on	 a	

magnetic	ergometer	(Lode	Excalibur	Sport,	Lode,	Groningen,	The	Netherlands).	One	minute	

of	easy	cycling	(20W,	85	RPM)	was	executed	before	starting	the	first	sprint.	When	it	was	a	

BFR	 condition,	 cuffs	 were	 put	 bilaterally	 proximal	 on	 the	 tights	 and	 a	 slight	 amount	 of	

pressure	was	applied	 in	order	to	hold	the	cuffs	and	limit	their	movements	during	that	first	

minute.	 The	 amount	 of	 pressure	 was	 then	 adjusted	 to	 the	 required	 level	 three	 seconds	

Picture	2.	Equipment	on	subject	during	RSA	
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before	 the	 first	 sprint	 and	 was	 maintained	 until	 the	 end	 of	 the	 post-neuromuscular	

assessment.	Participants	were	asked	to	maintain	a	cadence	of	85	RPM	prior	each	sprint	and	

were	 strongly	 verbally	 encouraged	 during	 the	 whole	 test	 to	 perform	 as	 many	 sprint	 as	

possible.	The	 test	was	stopped	when	subjects	 reached	exhaustion	or	could	not	maintain	a	

cadence	higher	 than	70	RPM	or	maintain	50%	of	 the	mean	power.	During	 the	entire	 test,	

subjects	 donned	 several	 other	 measuring	 devices	 (muscular	 and	 cerebral	 oxygenation,	

PortaMon	and	PortaLite,	Artinis,	Zetten,	The	Netherlands;	hemodynamic	parameters,	Physio	

Flow®,	 Manatec	 type	 PF05L1,	 Paris,	 France;	 heart	 rate	 monitor,	 Polar	 RS400,	 Kempele,	

Finland;	oxygen	saturation,	8000Q2	1m,	Nonin	Medical	 Inc.,	Amsterdam,	The	Netherlands)	

and	were	equipped	with	a	mask	 for	 the	measurements	of	 the	gas	exchange (Medgraphics	

CPX,	 Loma	 Linda,	 USA).	 Finally,	 all	 bike	 data	 (number	 of	 sprints,	 total	 work	 (J),	 power	
average	 (W),	peak	power	 (W)	and	maximal	average	power	 (W))	were	directly	 recorded	by	

the	ergocycle.	

2.4	Neuromuscular	fatigue	assessment	and	analysis	

2.4.1	Materials	
	
Participants	were	prepared	and	equipped	prior	each	testing	session.	In	order	to	collect	the	

EMG	activity,	nine	electrodes	(Ag/AgCl)	of	10mm	surface	(Kendall,	Covidien,	REF	31118733,	

Mansfield,	 MA,	 USA)	 were	 spread	 on	 the	 vastus	

lateralis	(VL),	vastus	medialis	(VM)	and	rectus	femoris	

(RF)	 of	 the	 right	 thigh	 that	 had	 previously	 been	

shaved	and	wiped	with	 sandpapers	and	alcohol.	 The	

placement	 was	 marked	 after	 the	 first	 session	 and	

participants	 were	 asked	 to	 keep	 the	 marks	 with	 a	

permanent	pen	during	the	whole	study.	

5	 x	10	cm	stimulation	electrodes	 (Compex,	Ecublens,	

Switzerland)	were	placed	on	 the	 right	 femoral	 nerve	

(inguinal	 triangle)	 and	at	 the	equivalent	 level	 on	 the	

mid-gluteus.	Subjects	were	seated	on	a	custom-made	

chair	 ergometer	 that	 was	 equipped	 with	 a	 force	

gauge	 at	 the	 ankle	 level.	 The	 chair	was	 adjusted	 for	

each	participant	and	for	each	trial	in	order	to	obtain	a	

90°	leg	bending.	

Picture	3.	Neuromuscular	assessment	
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The	stimulation	electrodes	were	connected	to	a	Digitimer	(model	DS7AH,	Hertfordshire,	UK)	

and	 the	EMG	electrodes	were	 connected	 to	an	acquisition	 system	Biopac	MP150	 (MP150,	

BIOPAC,	Goleta,	CA).	

Data	were	recorded	with	a	frequency	of	acquisition	of	2000	Hz	for	the	EMG	signal	and	1000	

Hz	 for	 the	 force	 signal.	 The	 data	 were	 collected	 and	 analyzed	 with	 the	 software	

Acqknowledge	(AcqKnowledge,	BIOPAC,	Goleta,	CA).	

Amplitude	 (peak	 to	peak)	was	collected	 for	MVC,	evoked	 forces	 (superimposed	doublet	at	

100	Hz,	100	Hz	 stimulation	at	 rest	 (P100),	10	Hz	 stimulation	at	 rest	 (P10),	 twitch),	and	M-

wave.		

The	 ratio	 of	 evoked	 force	 at	 low	 and	 high	 frequency	 was	 calculated	 as	 “amplitude	 of	

P10/amplitude	of	P100”.	

Root	mean	square	of	the	raw	signal	was	assessed	with	a	250ms	interval	on	either	side	of	the	

peak	 force	during	MVC	and	was	normalized	by	 the	amplitude	of	 the	M-wave	of	 the	VL	 to	

obtain	the	ratio	RMS/M.	

The	VAL	was	calculated	with	the	following	formula	allowing	a	correction	(Place	et	al.,	2007)	

if	the	superimposed	doublet	was	not	exactly	at	the	peak	force	moment	of	MVC:	

VAL	 =	 {1	 –	 (superimposed	 doublet	 amplitude	 x	 voluntary	 torque	 just	 before	 the	

superimposed	doublet/maximal	voluntary	torque)/potentiated	doublet	amplitude}	x	100		

2.4.2	Sequence	of	stimulation	
	

The	optimal	intensity	of	stimulation	(i.e.,	which	recruited	all	knee-extensor	motor	units)	was	

determined	 at	 the	 beginning	 of	 each	 testing	 session	 (as	 explained	 in	 the	 previous	

“experimental	 design”	 section).	 The	 intensity	 was	 gradually	 increased	 by	 20	mA	 until	 the	

amplitude	 of	 the	 twitch	 and	 M-wave	 reached	 a	 plateau.	 In	 some	 subjects,	 electrode	

positions	 were	 adjusted	 to	 obtain	 a	 better	 M-wave	 shape	 and	 amplitude.	 To	 ensure	 all	

quadriceps	 motor	 units	 recruitment,	 the	 intensity	 was	 increased	 by	 20%	 of	 the	 pre-

determined	value.	

The	 assessment	 of	 fatigue	was	 achieved	 PRE	 and	 POST	 repeated	 sprints	 (approximately	 3	

minutes	after	the	end	of	RSA)	and	is	illustrated	in	Figure	5.		
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Subjects	 began	with	 a	MVC	with	 a	 superimposed	 doublet	 at	 100	 Hz,	 followed	 by	 100	 Hz	

stimulation	 at	 rest,	 10	 Hz	 stimulation	 at	 rest,	 and	 a	 twitch	 at	 rest.	 All	 stimulations	 were	

separated	 by	 ±	 2	 seconds.	 A	 last	 MVC	 was	 performed	 3	 seconds	 after	 the	 stimulation	

sequence.		

All	 this	sequence	was	performed	 in	the	condition	of	the	day	except	the	 last	MVC	that	was	

always	executed	without	BFR	(the	cuffs	pressure	were	released	just	after	the	twitch).	

2.5	Statistical	analysis	
	

Data	 are	 presented	 as	 mean	 ±	 standard	 error	 (SE).	 Two-way	 repeated	 measures	 ANOVA	

were	performed	to	assess	differences	pre	to	post	(condition	x	time)	and	between	conditions	

(hypoxia	 x	 occlusion)	 with	 Bonferroni	 post-hoc	 test.	 Correlations	 were	 made	 with	 the	

Pearson	product-moment	correlation	coefficient.	Null	hypothesis	was	rejected	at	p<0.05.	

Data	were	first	collected	 in	an	excel	 file	 (Microsoft	Excel,	Microsoft	Corporation,	Redmond,	

WA,	 USA).	 All	 subsequent	 analyzes	 were	 made	 using	 the	 software	 SigmaStat	 3.5	 (Systat	

Software,	San	Jose,	California,	USA).	

	

	

	

	

	

Figure	5.	Neuromuscular	assessment	Pre-	and	Post-RSA	with	MVC	with	superimposed	100Hz	doublet,	P100,	P10,	Twitch,	
MVC.	Force	is	in	red	(top	channel)	and	EMG	of	the	vastus	lateralis	in	blue	(bottom	channel)	

MVC	
superimposed	

P10	P100	 Twitch	

M-wave	

MVC	
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3.RESULTS	
	

	

First	 of	 all,	 Table	 1	 illustrates	 the	 AOP	 (in	mmHg)	 determined	 via	 Doppler	 ultrasound	 for	

each	subject	during	the	familiarization.	The	equivalent	pressure	(in	mmHg)	that	was	used	in	

the	study	corresponds	to	the	percentage	(60%	or	45%)	based	on	AOP.	

As	 shown	 above,	 AOP	 differs	 between	 subjects	 ranging	 from	 137	 mmHg	 to	 242	 mmHg	

(representing	a	43.4%	variation).	Mean	AOP	is	191	mmHg	(±10.1).	

3.1	Performance	and	global	fatigue	
	

Performance	 in	 RSA	 is	 firstly	 presented	 in	 Figure	 6	 with	 the	 comparison	 of	 total	 work	

performed	 between	 the	 nine	 conditions.	 This	 figure	 shows	 the	 work	 performed	 until	 the	

exhaustion	or	until	task	failure	and	attests	the	severity	of	the	task.	

As	 observed,	 there	was	 almost	 a	 linear	 decrease	 in	 total	work	 across	 condition,	with	 five	

times	 less	 total	 work	 in	 condition	 3800-60%	 compared	 to	 condition	 400-0%.	 Significant	

decreases	were	observed	in	all	conditions	except	at	2000-45%.	Total	work	was	only	affected	

by	hypoxia	in	conditions	without	BFR	with	a	decrease	of	34.5%	(2000-0%)	and	37.4%	(3800-

0%)	compared	to	condition	400-0%.	

Compared	to	condition	400-0%,	there	was	52.3%	(400-45%)	and	68.5%	(400-60%)	less	total	

work.	 At	 2000m,	 a	 decrease	 of	 29%	 (2000-45%)	 and	 60.2%	 (2000-60%)	 was	 reported	

compared	to	2000-0%.	Finally	and	compared	to	3800-0%,	there	was	51.2%	(3800-45%)	and	

68.2%	(3800-60%)	less	total	work.		

	

Table	1.	Arterial	occlusion	pressure	(AOP)	in	mmHg	determined	for	each	subject	via	Doppler	ultrasound	and	
the	corresponding	percentage	(60%	and	45%)	used	in	the	study.	

Subject	(n)	

Pressure	(mmHg)	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

100%	AOP	 171	 163	 210	 192	 137	 208	 207	 242	 239	 165	 167	

60%	AOP	 103	 98	 126	 115	 82	 125	 124	 145	 143	 99	 100	

45%	AOP	 77	 73	 95	 86	 62	 94	 93	 109	 108	 74	 75	



	 23	

	
Secondly,	 Figure	 7	 represents	 the	 MVC	 performance	 pre-	 and	 post-RSA.	 There	 was	 a	

significant	decrease	(p<0.001)	pre	to	post	in	all	conditions	at	60%BFR,	independently	of	the	

level	 of	 hypoxia.	 Moreover,	 differences	 between	 60%BFR	 and	 0%BFR	 were	 observed	

(p<0.001)	for	the	three	levels	of	hypoxia	as	well	as	between	60%BFR	and	45%BFR	(p<0.05)	at	

400m	and	at	3800m	(p<0.001).	Significant	changes	were	observed	in	the	first	two	conditions	

at	 45%BFR	 (400m	 and	 2000m),	 whereas	 no	 significant	 changes	 occurred	 in	 the	 other	

remaining	 conditions	 (0%BFR	 and	 3800-45%).	 The	 only	 effect	 of	 hypoxia	 appeared	 in	

condition	3800-0%	and	showed	a	difference	(p<0.05)	with	2000m.	
The	decrease	pre	to	post	in	MVC	was	mainly	affected	by	BFR.	At	0%	BFR,	the	change	pre	to	

post	was	7.5%,	12.6%	and	6.1%	for	400m,	2000m,	3800m,	respectively.		

At	45%	BFR,	a	decrease	of	23.9%,	28.4%,	and	12.7%	was	observed	at	400m,	2000m,	3800m,	

respectively.		

Finally,	 at	60%	BFR,	MVC	decreased	by	45.1%,	49.6%	and	52.6%	at	400m,	2000m,	3800m,	

respectively.	

	

	

	

Figure	6.	Total	work	performed	(kJ)	across	conditions.	400,	2000,	3800	indicate	the	level	of	hypoxia	(400m,	2000m	and	3800m,	
respectively);	0%,	45%,	60%	indicate	the	level	of	BFR	(percentage	of	AOP).		##	<	0.01	###	<	0.001	for	differences	with	400m;	†	<	0.05	††	<	
0.01	†††	<	0.001	for	differences	with	0%	

Mean	of	total	work	until	exhaustion	or	task	failure	across	conditions	



	 24	

	

Thirdly,	 Figure	 8	 shows	 the	 percentage	 change	 pre	 to	 post	 in	 MVC	 (%	 loss	 of	 force)	

correlated	to	the	total	work.	It	appears	a	significant	(p<0.05)	correlation	between	these	two	

variables	 (r	=	 -0.78).	Thus,	 the	 largest	decrement	 in	MVC	was	associated	with	 the	smallest	

amount	of	total	work	(conditions	at	400/2000/3800-60%).	The	conditions	without	BFR	were	

the	ones	where	the	highest	level	of	total	work	is	produced.	However,	those	conditions	also	

had	the	smallest	decrease	in	MVC	pre	to	post.	

Contrarily,	 conditions	 at	 60%BFR	 had	 the	 largest	 decrement	 in	MVC	 (between	 45.1%	 and	

52.6%)	but	with	five	times	less	total	work	compared	to	conditions	without	BFR.	Interestingly,	

the	percentage	of	decrement	of	MVC	increased	massively	with	the	amount	of	BFR	with	no	

effect	of	altitude.	

	

	

	

	

	

Figure	7.	Performance	in	maximal	voluntary	contraction	(MVC)	pre	and	post	repeated	sprints	(RSA)	across	conditions.	400m,	2000m,	
3800m	indicate	the	three	levels	of	hypoxia;	Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	full	lines	represent	conditions	at	
0%BFR;	dashed	lines	represent	conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	**	<	0.01		***<0.001	for	differences	with	
pre;	$	<	0.05	for	differences	with	2000m;	†††	<	0.001	for	differences	with	0%;	&	<	0.05	for	differences	with	45%;		&&&	<	0.001	for	differences	
with	45%	

Mean	of	maximal	voluntary	contraction	Pre-	and	Post-RSA	across	conditions	
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3.2	Central	fatigue	
	

As	 explained	 previously,	 central	 fatigue	 was	 assessed	 pre-	 and	 post-RSA	 using	 the	 twitch	

interpolation	technique.	The	voluntary	activation	level	(VAL)	is	presented	in	Figure	9	below	

with	mean	values	(±SE).		

There	was	a	large	effect	(p<0.001)	of	BFR	at	60%,	independently	of	the	level	of	hypoxia.	 In	

these	conditions	and	post	RSA,	VAL	decreased	by	13.4%,	14.4%	and	13.8%	at	400m,	2000m,	

and	3800m,	respectively.	Furthermore,	there	was	a	significant	difference	between	60%BFR	

and	0%BFR	 (p<0.001)	 for	 the	3	 levels	of	hypoxia	 as	well	 as	 a	difference	 (p<0.01)	between	

60%BFR	 and	 45%BFR	 at	 2000m.	 The	 highest	 level	 of	 hypoxia	 (3800m)	 combined	with	 the	

mid-level	of	BFR	(45%)	also	altered	VAL	with	a	decrease	pre	to	post	of	5.8%	(p<0.05)	and	a	

significant	difference	compared	to	0%BFR	(p<0.01).		

Finally,	VAL	decreased	by	4.7%	(400-45%)	and	4.1%	(2000-45%)	although	changes	were	not	

significant.	 Finally,	 a	 slight	 increase	 (non-significant)	 in	 VAL	 post-RSA	 is	 noticed	 at	 0%BFR	

with	differences	pre	to	post	of	1.9%	(400-0%),	2.5%	(2000-0%)	and	1.7%	(3800-0%).	

Figure	8.	Relationship	between	the	Total	Work	(kJ)	performed	and	the	relative	pre-to-post	change	in	maximal	voluntary	contraction	(MVC)	
(%).	Circles	indicate	conditions	at	400m;	squares	indicate	conditions	at	2000m;	triangles	indicate	conditions	at	3800m;	white	shapes	
represent	condition	at	0%BFR;	grey	shapes	represent	condition	at	45%BFR;	black	shapes	represent	conditions	at	60%BFR;	r:	correlation	
coefficient;	p<0.05;	n:	number	of	subjects	

Relationship	between	the	total	work	performed	and	the	percentage	loss	of	strength	

r	=	-0.78	
n	=	11	

=	400m	
=	2000m	
=	3800m	
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Figure	9.	Changes	pre	to	post	in	voluntary	activation	level	(VAL)	in	percentage	across	conditions.	400m,	2000m,	3800m	indicate	the	three	
levels	of	hypoxia;	Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	full	lines	represent	conditions	at	0%BFR;	dashed	lines	
represent	conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	*	<	0.05	***<0.001	for	differences	with	pre;	††	<	0.01	†††	<	
0.001	for	differences	with	0%;	&&	<	0.01	for	differences	with	45%	

Mean	of	voluntary	activation	level		
Pre-	and	Post-RSA	across	conditions	

Figure	10.	Relationship	between	changes	(in	percentage)	pre	to	post	in	voluntary	activation	level	(VAL)	and	changes	in	maximal	voluntary	
contraction	(MVC)	across	conditions.	Circles	indicate	conditions	at	400m;	squares	indicate	conditions	at	2000m;	triangles	indicate	conditions	
at	3800m;	white	shapes	represent	condition	at	0%BFR;	grey	shapes	represent	condition	at	45%BFR;	black	shapes	represent	conditions	at	
60%BFR;	r:	correlation	coefficient;	p<0.001;	n:	number	of	subjects	

Relationship	between	the	changes	Pre	to	Post	in	VAL		
and	the	percentage	loss	of	strength	Pre-	to	Post-RSA	

r	=	-0.96	
n=11	
	

=	400m	
=	2000m	
=	3800m	
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A	strong	significant	(p<0.001)	correlation	exists	(r	=	-0.96)	between	the	decrease	in	VAL	and	

the	decrease	in	MVC	and	is	illustrated	in	Figure	10	above.	

In	this	way,	the	highest	decrement	in	MVC	was	associated	with	the	largest	reduction	in	VAL.	

Furthermore,	a	large	effect	of	BFR	was	observed	on	these	two	variables	while	a	slight	impact	

of	 hypoxia	 was	 noted.	 The	 conditions	 at	 60%BFR	 (black	 shapes)	 led	 to	 the	 greatest	

decrement	 in	VAL	 as	well	 as	MVC,	whereas	45%	BFR	 (3	 grey	 shapes)	 and	0%BFR	 (3	white	

shapes)	 induced	smaller	decrements	on	 these	 two	variables.	 Interestingly,	3	distinct	 levels	

are	observed	on	the	graph	above	corresponding	to	the	3	levels	of	BFR.	

	

The	 second	 central	 fatigue	 marker	 is	 represented	 in	 the	 Figure	 11	 below	 with	 the	 ratio	

RMS/M.	

	

	

	

Figure	11.	Variations	of	the	ratio	RMS/M	for	the	vastus	lateralis	normalized	in	percentage	changes	pre	to	post	(%).	400m,	2000m,	3800m	
indicate	the	three	levels	of	hypoxia;	Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	Full	lines	represent	conditions	at	0%BFR;	
dashed	lines	represent	conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	**	<	0.01	***<0.001	for	differences	with	pre;	†	<	
0.05		††	<	0.01	for	differences	with	0%	

Variations	of	the	ratio	RMS/M	for	the	vastus	lateralis	normalized		
in	percentage	changes	Pre-	to	Post-RSA	across	conditions	



	 28	

The	only	significant	changes	occurred	at	60%	BFR	with	a	decrease	from	pre	to	post	of	37%	

(p<0.01),	38.9%	(p<0.001),	and	38%	(p<0.001)	at	400m,	2000m,	and	3800m,	respectively.		

This	larger	decrease	of	RMS/M	at	60%BFR	was	associated	with	a	significant	difference	with	

condition	at	0%BFR	(p<0.01	at	400m;	p<0.05	at	2000m	and	3800m).	

At	45%	BFR,	a	non-significant	decrease	of	-9.3%,	-10.1%,	-8.6%	was	observed	at	400m,	2000,	

3800m,	respectively.		

Lastly,	 an	 increase	 in	RMS/M	was	noticed	 in	 the	conditions	at	0%BFR	with	changes	pre	 to	

post	 of	 8%	 (400-0%),	 24.7%	 (2000-0%)	 and	 15.6%	 (3800-0%).	 However,	 these	 variations	

were	not	significant.	

3.3	Peripheral	fatigue	
	

The	Figure	12	underneath	represents	changes	pre	to	post	in	the	amplitude	of	the	M-wave	of	

the	VL.	Neither	BFR	nor	hypoxia	affected	the	M-wave	in	any	condition.		

	

	

Figure	12.	Mean	amplitude	(mV)	of	the	M-wave	of	the	vastus	lateralis	Pre-	and	Post-RSA.	400m,	2000m,	3800m	indicate	the	three	levels	of	
hypoxia;	Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	full	lines	represent	conditions	at	0%BFR;	dashed	lines	represent	
conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	

Mean	amplitude	of	the	M-wave	of	the		
vastus	lateralis	Pre-	and	Post-RSA	across	conditions	
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Figure	 13	 below	points	 out	 the	 variations	 pre	 to	 post	 of	 evoked	 forces	 by	 high	 frequency	

stimulations	(P100).	

Significant	 changes	 were	 found	 in	 all	 conditions	 except	 at	 3800-0%.	 P100	 decreased	

considerably	 at	 60%BFR	 (p<0.001).	 In	 these	 conditions,	 the	 amplitude	 of	 P100	was	 30.6%	

(400-60%),	27.3%	(2000-60%),	and	26.1%	(3800-60%)	lower	post-RSA	compared	to	pre-RSA.	

Moreover,	a	difference	in	post	between	400-60%	and	400-0%	(p<0.01)	was	reported	as	well	

as	 between	 3800-60%	 and	 3800-0%	 (p<0.05).	 Conditions	 at	 45%BFR	 led	 to	 a	 decrease	 of	

22.8%	 (p<0.001),	 25.1%	 (p<0.001),	 and	 16.1%	 (p<0.05)	 at	 400m,	 2000m,	 and	 3800m,	

respectively	 without	 any	 significant	 effect	 of	 BFR	 or	 hypoxia.	 Finally,	 P100	 decreased	 by	

19.3%	 (p<0.01),	 21.1%	 (p<0.01),	 and	 10.6%	 (p>0.05)	 in	 condition	 at	 0%BFR	 and	 with	 an	

effect	 of	 hypoxia	 at	 2000m	 (p<0.05)	 and	 3800m	 (p<0.05)	 compared	 to	 400m	 and	 2000m,	

respectively.	

	

	
	

Figure	13.	Changes	pre-	to	post-RSA	in	low	frequency	stimulation	(P10)	across	conditions.	400m,	2000m,	3800m	indicate	the	three	levels	of	
hypoxia;	Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	full	lines	represent	conditions	at	0%BFR;	dashed	lines	represent	
conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	*	<	0.05	**	<	0.01		***<0.001	for	differences	with	pre;	#	<	0.05	for	
differences	with	400m;	$	<	0.05	for	differences	with	2000m;	†	<	0.05		††	<	0.01	for	differences	with	0%	

Mean	evoked	forces	by	high	frequency	stimulation	
(P100)	Pre-	and	Post-RSA	across	conditions	
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Low	frequency	fatigue	is	reflected	by	the	changes	in	evoked	forces	at	rest	by	low	frequency	

stimulations	 (10	 Hz).	 As	 demonstrated	 in	 Figure	 14,	 all	 conditions	 induced	 significant	

decrements	in	P10	(p<0.001),	independently	of	BFR	and	hypoxia,	except	in	condition	3800m-

0%	where	a	difference	(p<0.01)	occurred	when	compared	to	condition	2000-0%.	

Hence,	 P10	 decreased	 by	 42.4%,	 43%,	 and	 31.4%	 at	 0%BFR	 and	 at	 400m,	 2000m,	 and	

3800m,	respectively;	by	40.6%,	40.9%,	and	35.8%	at	45%	and	at	400m,	2000m,	and	3800m,	

respectively;	 and	 finally	 by	 48.2%,	 46.2%,	 and	 42%	 at	 60%BFR	 and	 at	 400m,	 2000m,	 and	

3800m,	respectively.	

	

	

The	last	marker	of	peripheral	fatigue,	the	ratio	P10/P100,	is	represented	on	Figure	15	below.	

P10/P100	 was	 decreasing	 significantly	 (p<0.001)	 in	 all	 conditions	 without	 any	 effect	 of	

hypoxia	or	BFR.	At	400m,	reductions	of	30.4%,	28.2%,	and	25.6%	were	observed	at	0%BFR,	

45%BFR,	 and	 60%BFR,	 respectively.	 At	 2000m,	 post	 values	 were	 25.7%,	 21.5%,	 and	 27%	

lower	than	pre	at	0%BFR,	45%BFR,	and	60%BFR,	respectively.	Finally,	the	ratio	decreased	pre	

Figure	14.	Changes	pre-	to	post-RSA	in	low	frequency	stimulation	(P10)	across	conditions.	400m,	2000m,	3800m	indicate	the	three	levels	of	
hypoxia;	Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	full	lines	represent	conditions	at	0%BFR;	dashed	lines	represent	
conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	***<0.001	for	differences	with	pre;	$$	<	0.01	for	differences	with	2000m	

Mean	evoked	forces	by	low	frequency	stimulation	(P10)	
Pre-	and	Post-RSA	across	conditions	
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to	 post	 by	 29.9%,	 28.7%,	 and	 24.8%	 at	 3800m	 and	 at	 0%BFR,	 45%BFR,	 and	 60%BFR,	

respectively.		

Low	 frequency	 fatigue	 was	 more	 affected	 than	 high	 frequency	 fatigue	 as	 the	 ratio	

diminished.	

	

Figure	16	shows	the	correlations	between	VAL	and	total	work	as	well	as	the	ratio	P10/P100	

and	the	total	work.	

The	 ratio	 P10/P100	was	 not	 significantly	 correlated	 (p>0.05)	 to	 the	 total	work	 (r	 =	 -0.29),	

contrary	 to	 the	 relationship	 between	 VAL	 and	 the	 total	 work,	 which	 was	 more	 strongly	

correlated	(r	=	0.85;	p<0.01).	

Thus,	 the	 largest	 decrement	 in	 VAL	 occurred	 when	 the	 smallest	 amount	 of	 work	 was	

performed,	 corresponding	 to	 the	 conditions	 with	 a	 high	 level	 of	 BFR.	 Contrarily,	 a	 slight	

increase	in	VAL	was	observed	in	the	conditions	where	the	highest	total	work	was	produced,	

corresponding	to	the	conditions	without	BFR.	Regarding	the	ratio	P10/P100,	one	may	note	

that	 its	 evolution	 was	 nearly	 constant	 and	 follows	 a	 low	 slope	 trendline,	 suggesting	 that	

Figure	15.	Variations	of	the	ratio	P10/P100	Pre-	and	Post-RSA	across	conditions.	400m,	2000m,	3800m	indicate	the	three	levels	of	hypoxia;	
Pre	and	Post	correspond	to	the	assessment	Pre-	and	Post-RSA;	full	lines	represent	conditions	at	0%BFR;	dashed	lines	represent	conditions	at	
45%BFR,	dotted	lines	represent	conditions	at	60%BFR.	***<0.001	for	differences	with	pre	

Mean	of	the	ratio	P10/P100	Pre-	and	Post-RSA	across	conditions	
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P10/P100	developed	at	about	 the	 same	 level,	 independently	of	how	much	 total	work	was	

produced.	This	 is	highlighted	by	the	 low	correlation	coefficient	 	 (r	=	-0.29),	showing	a	poor	

relationship	between	these	two	factors.	

	

	

	

	

	

	

	

	

	

	

	

VAL	
r	=	0.85	
p	<	0.01	
n	=	11	

P10/P100	
r	=	-0.29	
p	>	0.05	
n	=	11	

Relationship	between	the	percentage	change	Pre	to	Post	in	VAL		
and	P10/P100	in	function	of	the	Total	Work	Performed	

	

Figure	 16.	 Relationship	 between	 the	 percentage	 changes	 Pre	 to	 Post	 in	 voluntary	 activation	 level	 (VAL),	 ratio	 low	 frequency/high	
frequency	 stimulations	 (P10/P100)	 in	 function	 of	 the	 Total	 Work	 performed	 (kJ).	 Circles	 indicate	 conditions	 at	 400m;	 squares	 indicate	
conditions	at	2000m;	triangles	indicate	conditions	at	3800m;	white	shapes	represent	condition	at	0%BFR;	grey	shapes	represent	condition	at	
45%BFR;	black	shapes	represent	conditions	at	60%BFR;	Full	 trendline	represents	VAL	with	coefficient	correlation=0.85	and	p<0.01;	dashed	
trendline	represents	the	ratio	P10/P100	with	coefficient	correlation=-0.29	and	p>0.05;	n:	number	of	subjects.	

=	400m	
=	2000m	
=	3800m	
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4.	DISCUSSION	
	

The	 aim	 of	 this	 work	 was	 to	 investigate	 the	 neuromuscular	 component	 and	 assess	 the	

fatigue	 induced	 by	 repeated	 sprints	 to	 exhaustion	 under	 different	 levels	 of	 hypoxia	 and	

different	 levels	of	BFR.	To	 the	best	of	our	knowledge,	 the	present	study	 is	 the	 first	one	to	

combine	RSA,	hypoxia	and	BFR.		

The	principal	novel	finding	of	this	study	was	the	large	central	fatigue	induced	in	conditions	at	

60%BFR,	independently	of	the	level	of	hypoxia.	Secondly,	we	showed	that	central	alterations	

also	occurred	when	a	high	level	of	hypoxia	(3800m)	was	combined	with	a	lower	level	of	BFR	

(45%).	Performance	(total	work)	and	global	fatigue	(MVC)	decreased	in	all	conditions	but	the	

decrements	were	greater	with	BFR.	 Finally,	 peripheral	markers	decreased	 in	 all	 conditions	

after	RSA	to	exhaustion,	with	only	a	minor	impact	of	the	environment.		

4.1	Performance	and	global	fatigue	

4.1.1	Effect	of	hypoxia	and	BFR	on	total	work	
	

Exhaustion	 or	 task	 failure	 was	 reached	 faster	 when	 BFR	 was	 applied	 as	 shown	 with	 the	

reduced	amount	of	total	work	(Figure	6)	and	number	of	sprint	performed	(see	Figure	20	in	

appendix)	in	these	conditions	compared	to	0%BFR.	Moreover,	the	amount	of	BFR	impacted	

the	total	work	as	higher	amount	of	pressure	led	to	greater	reduction	in	total	work	and	thus	

faster	exhaustion	or	task	failure.	

Interestingly,	the	only	significant	effect	of	hypoxia	on	total	work	occurred	at	0%BFR.	As	soon	

as	BFR	was	applied	and	independently	of	the	percentage,	hypoxia	affected	neither	the	total	

work	nor	MVC,	suggesting	already	a	stronger	effect	of	BFR	on	fatigue	than	hypoxia.	

Bowtell	et	al.	(2014)	reported	significant	difference	in	total	energy	expenditure	during	10x6s	

all	out	sprint	(30s	recovery)	at	various	levels	of	hypoxia.	Hence,	total	work	(kJ)	was	595±60	

at	12%	FiO2,	632±63	at	13%	FiO2,	638±57	at	14%	FiO2,	668±60	at	15%	FiO2	and	695±79	at	

21%	FiO2.	Compared	to	condition	in	normoxia	(FiO2	=	21%),	the	decrease	of	total	work	was	

4%	at	15%	FiO2	and	of	9%	at	13%	FiO2.	Smith	and	Billaut	(2010)	also	reported	a	mechanical	

work	 altered	 by	 hypoxia	 (FiO2=0.13)	 compared	 to	 normoxia	 (-7.6%)	 in	 ten	 10s	 sprints	

interspersed	 by	 30s	 recovery.	 This	 is	 consistent	 with	 our	 results,	 as	 a	 lower	 level	 of	 FiO2	

reduced	the	total	work.	However,	the	present	study	results	have	shown	larger	decrement	in	

total	work	at	about	the	same	level	of	hypoxia	(FiO2=16.4%	and	12.8%).	Indeed,	total	work	in	

the	current	study	was	decreasing	by	34.5%,	and	37.4%	at	2000m	and	3800m	compared	to	
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condition	 in	 normoxia.	 The	 difference	 of	 protocols	 (fixed	 number	 of	 sprints	 versus	 to	

exhaustion)	may	explain	the	largest	decrease	in	total	work	at	altitude	in	the	current	study.	

Secondly,	 the	 sprint	 duration	 (10s)	 and	 work/recovery	 ratio	 (1:2)	 used	 may	 also	 have	

affected	 the	 time	 to	 exhaustion.	 Glaister	 et	 al.	 (2005)	 pointed	 out	 the	 differences	 in	

physiological	 response	 and	 performance	 when	 the	 recovery	 time	 was	 shortened.	 The	 25	

participants	 of	 that	 study	 performed	 2	 protocols	 consisting	 of	 20x5s	 cycling	 sprints	 with	

differing	 recovery	periods	 (10s	or	30s).	 The	 longer	 recovery	period	 (30s)	 resulted	 in	 lower	

measurements	 of	 fatigue	 (performance	 decrement),	 heart	 rate,	 oxygen	 uptake,	 and	

respiratory	 exchange	 ratio	 (RER).	 Likewise,	 researchers	 noted	 an	 increase	 in	 the	 rate	 of	

perceived	exertion	(RPE)	and	blood	lactate	in	both	protocols	with	significant	lower	values	for	

the	 longer	recovery	period	(30s).	The	choice	of	the	duration	of	the	sprints	and	of	the	ratio	

influences	 considerably	 the	 development	 of	 fatigue.	 The	 work	 period	 was	 longer	 in	 the	

current	study	(10s	vs	5s)	compared	to	the	one	of	Glaister	et	al.	(but	with	the	same	ratio	1:2)	

and	 that	may	 explain	 the	 greater	 decrement	 in	 total	work	 and	 faster	 exhaustion	 reaching	

compared	 to	 other	 studies	 where	 smaller	 work	 periods	 were	 performed	 (Bowtell	 et	 al.,	

2014)	 interspersed	with	 longer	 recovery	periods	 (Smith	and	Billaut,	 2010),	 thus	allowing	a	

more	fully	recovery.	

It	 is	known	that	the	contribution	of	aerobic	processes	is	 limited	(<10%)	when	performing	a	

single	 sprint	 of	 short	 duration	 (6	 sec)	 (McGawley	 and	 Bishop,	 2008).	 Indeed,	 the	 energy	

supply	 for	 such	 effort	 is	 mainly	 related	 to	 phosphocreatine	 (PCr)	 (46%)	 and	 anaerobic	

glycolysis	 (40%).	 However,	 the	 contribution	 of	 aerobic	 processes	 tends	 to	 increase	 when	

sprints	 are	 repeated	 and	 when	 the	 effort	 extends.	 It	 has	 been	 estimated	 that	 aerobic	

metabolism	 could	 contribute	 up	 to	 40%	 of	 the	 total	 energy	 supply	 during	 the	 final	

repetitions	 of	 a	 RSA	 (Girard	 et	 al.,	 2011).	 Several	 authors	 reported	 PCr	 metabolism	 and	

resynthesis	 as	 a	 major	 determinant	 during	 RSA,	 as	 PCr	 represents	 the	 most	 immediate	

reserve	 for	 the	 re-phosphorylation	 of	 adenosine	 triphosphate	 (ATP)	 (Girard	 et	 al.,	 2011).	

Indeed,	 depletion	 of	 PCr	 stocks	 occurs	 rapidly,	 especially	 in	 high	 intensity	 exercise	 and	

sprints	where	lots	of	energy	is	required	from	the	onset	of	exercise.	The	resynthesis	has	been	

shown	to	be	an	oxygen	dependent	process	 following	an	exponential	curve	 including	a	 fast	

and	a	slow	recovery	component.	The	specificity	of	the	task	and	more	specially	the	ratio	used	

during	 RSA	 will	 consequently	 affect	 the	 depletion	 of	 PCr	 according	 to	 the	 duration	 of	

work/recovery	period.	Moreover,	the	rate	of	PCr	resynthesis	may	vary	between	subjects	and	

according	 to	 the	 initial	 rate	 of	 PCr	 recovery,	 maximum	 aerobic	 capacity	 and	 metabolic	

conditions	at	the	end	of	the	exercise.	
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In	 the	 current	 study,	 the	 number	 of	 sprint	 performed	 varied	 between	 30	 (400-0%)	 and	 8	

(3800-60%).	 In	 fact,	 the	 present	 protocol	 consisted	 of	 a	 progressive	 reduction	 in	 oxygen	

availability	 through	a	 systemic	and/or	 localized	hypoxia.	Therefore,	 it	 is	possible	 to	 infer	a	

variable	 contribution	 of	 oxidative	 metabolism,	 which	 is	 more	 limited	 in	 some	 conditions	

than	others	and	related	to	environmental	conditions.	

It	has	been	reported	that	athletes	may	reach	80-100%	of	the	VO2max	after	consecutive	sprints	

(Dupont	&	Al,	2005;	Buchheit,	2010),	and	therefore,	that	VO2max	may	be	a	limiting	factor	of	

RSA	(Girard	et	al.,	2011).	However,	it	is	possible	to	never	reach	such	level	of	VO2	according	

to	the	ratio	used,	as	too	short	periods	of	work	or	too	long	periods	of	recovery	may	limit	the	

development	of	VO2,	inhibiting	the	possibility	to	reach	VO2max.		

Furthermore,	 strong	 correlations	 exist	 between	 VO2max	 and	 the	 decrement	 score	 in	 RSA,	

proving	the	necessity	to	have	a	good	aerobic	fitness	in	order	to	resist	fatigue	(Hamilton	et	al.	

1991;	 McMahon	 and	 Wenger	 1998;	 Bishop	 et	 al.	 2004).	 The	 VO2	 kinetic	 has	 also	 been	

studied	in	RSA	(Dupont	et	al.,	2005)	and	it	has	been	proposed	that	faster	kinetics	(on-phase	

and	off-phase)	permits	reduction	 in	the	oxygen	deficit	 (at	the	onset	of	exercise)	and	faster	

re-oxygenation	 post	 sprint	 of	 muscle	 O2	 and	 PCr,	 thus	 improving	 performance	 in	 RSA	

(Bogdanis	 et	 al.,	 1996).	 These	 last	 authors	 also	 showed	 that	 the	 same	 level	 of	 PCr	 was	

reached	 between	 subjects	 at	 the	 end	 of	 a	 first	 30s	 sprint.	 However,	 researchers	

demonstrated	a	slower	PCr	resynthesis	in	subjects	who	had	the	highest	peak	power	output	

(PPO)	and	mean	power	output	(MPO)	in	the	first	sprint,	which	led	to	an	interesting	inverted	

correlation	(r	=	-0.81)	between	PPO	and	the	percentage	PCr	resynthesis	as	well	as	another	

one	 linking	 endurance	 fitness	 (VO2max)	 to	 PCr	 resynthesis.	 These	 previous	 findings	 are	

interesting,	 as	 it	 has	 often	 been	 reported	 that	 subjects	 with	 the	 higher	 PPO	 in	 the	 first	

sprints	 are	 the	 ones	 with	 the	 highest	 decrement	 score	 during	 RSA	 (Girard,	 2011),	 which	

could	also	explain	the	variations	of	performance	between	subjects	in	the	current	study.	

The	VO2max	or	VO2	kinetic	was	not	measured	in	the	present	study	but	it	is	worth	noting	that	

the	total	work	performed	and	the	variations	according	to	the	standard	error	were	greater	in	

these	first	three	conditions	without	BFR	compared	to	the	subsequent	ones.	It	is	possible	that	

the	 difference	 in	 fitness,	 maximal	 oxygen	 uptake,	 and	 oxygen	 uptake	 kinetics	 between	

subjects	made	a	greater	difference	of	performance	in	these	conditions	without	BFR,	as	they	

allow	a	higher	use	of	the	aerobic	component	without	developing	too	much	neuromuscular	

fatigue	(attests	by	the	low	decrement	in	MVC	and	low	central	fatigue	parameters).	Although	

the	 20s	 recovery	 between	 each	 sprint	 does	 not	 permit	 the	 full	 recovery	 and	 the	 full	 PCr	

resynthesis,	 the	 difference	 in	 aerobic	 capacity	 between	 subjects	may	 lead	 to	 a	 faster	 PCr	
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replenishment.	 Therefore	 explaining	 the	 greater	 variations	 in	 the	 condition	 without	 BFR.	

Likewise,	the	difference	in	the	distribution	of	muscle	fibers	between	subjects,	influenced	by	

many	 factors	 (gender,	 age,	 training	 status)(Miller	 et	 al.,	 1993),	 may	 lead	 to	 substantial	

differences	 in	 performance	 in	 the	 sense	 that	 a	 higher	 type	 II	 fiber	 distribution	 would	 be	

reflected	 by	 a	 higher	 capacity	 to	 produce	 power	 but	 a	 faster	 fatigue.	While	 contrarily,	 a	

greater	distribution	of	type	I	fiber	would	be	efficient	to	sustain	a	prolonged	effort	but	with	

limitation	of	the	capacity	to	develop	high	power.	

As	stated	previously,	 total	work	was	only	altered	by	hypoxia	 in	conditions	without	BFR.	As	

the	 level	of	hypoxia	 rises,	aerobic	performance	and	VO2max	are	altered	due	to	 the	reduced	

FiO2.	 Indeed,	 altitude	 is	 well	 known	 to	 affect	 VO2max	 (Buskirk	 et	 al.,	 1967;	 Daniels	 and	

Oldridge,	 1970;	 Dill	 and	 Adams,	 1971;	 Faulkner	 et	 al.,	 1968).	 It	 has	 been	 estimated	 that	

VO2max	is	decreased	by	7-9%	each	additional	1000	meter	and	that	it	continues	decreasing	in	

a	linear	way	as	the	level	of	hypoxia	increases	(Wehrlin	and	Hallén,	2006).	

Although	 the	 performance	 in	 the	 first	 sprint	 is	 principally	 determined	 by	 neuromuscular	

system	 and	 by	 intramuscular	 storage	 and	 the	 influence	 of	 environment	 is	 then	 negligible	

(Billaut	 and	 Bishop,	 2009),	 hypoxia	 can	 affect	 the	 energy	 metabolism	 when	 effort	 is	

sustained	or	sprints	are	repeated,	since	the	VO2max	 is	reduced	by	altitude	and	also	that	PCr	

resynthesis	is	an	oxygen-dependent	process.	

Additionally,	Hogan	 et	 al.	 (1999)	 reported	 a	 significant	 reduction	 in	workload	 and	 time	 to	

exhaustion	 as	 FiO2	was	 reduced	during	 incremental	 plantar	 flexion	 in	human.	Researchers	

showed	 that	 intramuscular	metabolic	 state	 at	 exhaustion	was	 similar	 among	 the	different	

FiO2	but	the	time	to	exhaustion	was	significantly	shorter	when	FiO2	was	reduced.	Moreover,	

the	study	reported	that	muscle	PCr	and	pH	were	significantly	reduced	when	FiO2	decreased	

and	suggested	that	the	higher	rate	of	fatigue	in	hypoxia	could	also	be	the	result	of	a	faster	

accumulation	of	inorganic	phosphate	and	a	slower	waste	removal.	

As	 in	other	studies,	 significant	decreases	 in	 total	work	were	observed	 in	 the	current	study	

when	 hypoxia	 was	 added	 and	 thus	 faster	 exhaustion	 or	 task	 failure.	 This	 could	 be	 firstly	

related	to	the	lower	FiO2	that	would	slow	the	on-transient	VO2	and	increases	the	O2	deficit	

during	 each	 sprint.	 Thus,	 utilizing	 the	 anaerobic	 system	 to	 a	 greater	 extent	 in	 order	 to	

provide	ATP	provision	(Girard	et	al.,	2011).	Secondly,	Haseler	et	al.	showed	that	PCr	recovery	

is	oxygen	dependent	and	suggested	that	hypoxia	extends	time	to	recovery	while	hyperoxia	

shortens	the	latter,	compared	to	normoxia.	Indeed,	the	kinetics	of	PCr	have	also	been	shown	

to	 be	 prolonged	 by	 hypoxia	 compared	 to	 normoxia	with	 a	 Tau	 (time	 to	 reach	 63%	of	 the	

curves	amplitude)	of	57.5s	 in	hypoxia	 (FiO2	=	0.10)	 compared	 to	37.6s	 in	normoxia	 (FiO2	=	
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0.21)	 (Haseler	 et	 al.,	 2007).	 Finally,	Mendez-Villanueva	 et	 al.	 (2012)	 indicated	 a	 significant	

correlation	 (r=0.67)	 between	 the	 recovery	 of	 PCr	 and	 the	 recovery	 of	 repeated	 sprint	

performance,	 suggesting	 that	 the	 inability	 to	 produce	 power	 during	 repeated	 sprints	 is	

related	to	PCr	metabolism.		

Taken	together,	the	effect	of	the	ratio	and	the	brief	period	of	recovery	(20s)	in	the	current	

study,	 as	 well	 as	 the	 addition	 of	 systemic	 hypoxia	 have	 probably	 led	 to	 an	 incapacity	 to	

restore	PCr	over	 time	as	well	as	an	accumulation	of	Pi	and	metabolite	waste,	 leading	 to	a	

faster	exhaustion.	

However,	there	was	not	a	significant	difference	in	the	decrement	of	total	work	between	the	

mid	 (2000m)	and	high	 (3800m)	 level	of	hypoxia	without	BFR.	This	can	be	explained	by	the	

fact	 that	 one	 subject	 performed	 80	 sprints	 in	 the	 condition	 at	 3800m.	 Without	 that	

performance,	the	number	of	sprints	decreases	to	15.1	(instead	of	21)	and	total	work	to	70.2	

kJ	(instead	of	102.7	kJ).	Considering	this	last	value	of	total	work,	it	would	make	all	conditions	

at	 3800m	with	 a	 quasi-similar	 total	work	 compared	 to	 the	 following	 one	 in	 normoxia	 but	

with	BFR	added.	This	may	have	some	 interesting	practical	applications,	as	 less	 fatigue	was	

observed	when	performing	at	a	high	level	of	hypoxia	but	without	or	with	less	BFR.	

The	 total	work	as	well	as	 the	number	of	 sprints	was	 then	considerably	 reduced	when	BFR	

was	 applied.	 Moreover,	 the	 amount	 of	 pressure	 affected	 the	 total	 work	 and	 a	 higher	

percentage	of	BFR	 led	to	a	faster	exhaustion	or	task	failure,	without	any	effect	of	hypoxia.	

Knowing	 the	 oxygen-dependent	 process	 of	 PCr	 resynthesis	 and	 its	 important	 contribution	

during	RSA,	recovery	period	in	BFR	conditions	were	probably	altered	due	to	the	limitation	of	

the	incoming	blood	flow,	which	varied	according	to	the	amount	of	pressure.	Several	authors	

reported	no	recovery	of	PCr	(Colliander	et	al.,	1988;	Harris	et	al.,	1976;	Sahlin	et	al.,	1979)	

when	blood	 flow	 is	 totally	occluded.	 In	addition,	Meyer	et	al.	 (2008)	pointed	out	a	 slower	

PCr	recovery	during	exercise	under	BFR	(~120	mmHg)	compared	to	free-flow	conditions.	In	

this	 way,	 the	 accumulation	 of	 metabolites	 within	 the	 muscles	 and	 the	 impossibility	 to	

restore	the	stock	of	PCr	may	be	 limiting	factors	 in	these	conditions	but	the	degradation	of	

total	work	and	the	fastest	exhaustion	or	task	failure	may	also	have	been	exacerbated	by	the	

manifestation	of	central	fatigue,	which	will	be	discussed	later.	

4.1.2	Effect	of	BFR	and	hypoxia	on	MVC	
	

As	 it	has	been	shown	in	the	results	section,	the	 loss	of	 force	was	mainly	 influenced	by	the	

percentage	 of	 BFR	 applied.	 The	 highest	 level	 of	 BFR	 led	 to	 the	 greatest	 loss	 of	 force	 and	

decrement	 in	 total	 work,	 independently	 of	 the	 level	 of	 hypoxia.	 However,	 the	 pre-MVC	
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measurements	were	 not	 affected	 by	 BFR,	 independently	 of	 the	 percentage,	 showing	 that	

BFR	has	no	impact	on	brief	(>5sec)	and	maximal	effort	such	as	MVC.	

Several	studies	reported	a	 loss	of	strength	following	repeated	sprints.	To	exemplify,	Billaut	

et	 al.	 (2006)	 as	well	 as	 Billaut	 and	Basset	 (2007)	 reported	 a	 decrease	 in	MVC	of	 13%	and	

10.9%.	 Racinais	 et	 al.	 (2007)	 showed	 a	 decrease	 of	 16.5%	 while	 Giacomoni	 et	 al.	 (2006)	

reported	a	decrease	of	15%	and	13%	(morning	versus	evening,	respectively).	Each	of	these	

protocols	consisted	in	10	sprints	of	6s	with	30s	recovery.	In	the	present	study,	lower	loss	of	

strength	 in	 conditions	 without	 BFR	 (7.5%,	 12.6%	 and	 6.1%	 at	 400m,	 2000m	 and	 3800m)	

were	 noted.	 These	 values	 are	 a	 bit	 surprising,	 and	 one	 could	 have	 expected	 higher	

decrement	 of	 force	 considering	 that	 our	 protocol	 is	 to	 exhaustion	 and	 according	 to	 the	

smaller	work/recovery	 ratio	compared	 to	 the	previous	studies.	 It	may	be	explained	by	 the	

short	period	of	recovery	between	the	end	of	RSA	and	the	assessment	of	MVC.	As	a	matter	of	

fact,	 a	measurement	of	 the	blood	 flow	was	 firstly	done	once	 subjects	 reached	exhaustion	

and	 before	 they	 moved	 to	 the	 chair	 ergometer	 for	 the	 fatigue	 assessment.	 Blood	 flow	

measurement	 was	 taken	 between	 1.30	 and	 1.45	 minutes	 after	 the	 end	 of	 RSA	 and	

assessment	 of	 fatigue	 often	 started	 around	 3	minutes	 after	 the	 end	 of	 exercise.	 Sahlin	&	

Seger	showed	a	rapid	partial	reversal	of	MVC	after	a	cycling	task	to	exhaustion	at	75%	VO2max	

and	 suggested	 two	 phases	 of	 recovery	 involving	 a	 rapid	 initial	 phase	with	 a	 half	 recovery	

time	 (t1/2)	 of	 about	 2	minutes.	Moreover,	 t1/2	for	 the	 PCr	 resynthesis	 has	 been	 calculated	

(Prampero	 and	 Margaria,	 1969)	 and	 corresponds	 approximately	 to	 30-40s.	 According	 to	

these	previous	findings,	it	is	possible	that	post	MVC	values	were	underestimated	due	to	the	

recovery	of	the	subjects	between	the	end	of	exercise	and	the	assessment	of	MVC.	However,	

larger	 decrements	 in	MVC	were	observed	when	BFR	was	 applied	 (23.9%,	 28.4%,	 12.7%	at	

45%BFR	and	400m,	2000m,	3800m,	respectively),	which	reached	almost	half	 the	voluntary	

strength	at	60%	BFR	 (45.1%,	49.6%	and	52.6%	at	400m,	2000m	and	3800m,	 respectively).	

These	 values	 were	 potentially	 also	 underestimated	 because	 of	 the	 recovery	 phase,	 as	

explained	 previously.	 Nevertheless,	 the	 pressure	 of	 the	 cuffs	 was	 maintained	 and	 only	

released	 at	 the	 end	 of	 the	 assessment	 of	 fatigue.	 It	 is	 probable	 thus,	 that	 the	 recovery	

allowed	during	 a	 few	minutes	was	 altered	 compared	 to	 the	 conditions	without	BFR.	 Total	

occlusion	has	been	proved	to	block	the	recovery	of	PCr	(Colliander	et	al.,	1988;	Harris	et	al.,	

1976;	Sahlin,	et	al.,	1979),	whereas	submaximal	occlusion	tends	to	slow	down	PCr	recovery	

compared	to	free	flow	conditions	(Meyer	et	al.,	2008).	In	addition,	Yasuda	et	al.	(2009,	2008)	

observed	 that	 only	 one	 minute	 of	 free-flow	 recovery	 led	 to	 differences	 in	 MVC	 values	

compared	to	a	first	one	directly	performed	at	the	end	of	an	arm	BFR	exercise.	Therefore,	the	
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assessment	 of	 MVC	 in	 the	 current	 study,	 even	 though	 the	 time	 was	 the	 same	 for	 all	

conditions	(approximately	3	minutes	after	the	end	of	RSE),	was	probably	not	performed	in	

the	same	recovery	conditions,	as	the	percentage	of	BFR	surely	exacerbated	the	kinetic	of	PCr	

recovery	and	waste	removal.	

Compared	to	the	literature,	few	cycling	studies	have	reported	such	level	of	force	decrement.	

More	precisely,	 no	high	 intensity	 cycling	exercise	 reported	 such	 loss	of	 strength,	 probably	

due	to	the	 limited	number	of	sprint	performed	in	these	studies.	To	 illustrate,	although	the	

modalities	 of	 exercise	 are	 not	 the	 same	 as	 in	 the	 present	 study,	 Sahlin	 &	 Seger	 (1995)	

reported	 34%	 loss	 of	 force	 in	 knee	 extensor	MVC	 following	 a	 constant	 cycling	 exercise	 to	

exhaustion	at	75%	VO2max	 (total	average	 time	 to	exhaustion	=	1h25).	 Likewise	Booth	et	al.	

(1997)	 reported	a	decrement	of	28%	after	1h12	 (mean	 time	 to	exhaustion)	cycling	at	75%	

VO2max.	 Girard	 and	 Racinais	 (2014)	 showed	 that	 MVC	 was	 decreasing	 following	 a	 cycling	

exercise	 at	 constant	 load	 to	 exhaustion	 but	 with	 no	 further	 effects	 of	 hypoxia	 (FiO2)	 or	

temperature	 compared	 to	 control	 condition,	 although	 time	 to	 exhaustion	was	 reduced	 in	

heat	or	in	hypoxia.		

Use	of	BFR	has	been	shown	to	decrease	MVC	but	 the	 few	studies	 that	 investigated	BFR	 in	

cycling	 did	 not	 report	 the	 loss	 of	 force.	 As	 examples,	 Wernbom	 et	 al.	 (2012)	 showed	 a	

reduction	of	62%	in	MVC	following	5	sets	of	knee	extension	to	concentric	torque	failure	and	

Loenneke	et	al.	(2012)	found	similar	decrease	after	4	sets	(30-15-15-15)	of	knee	extension.	

According	to	the	previous	 illustrations,	 it	 seems	that	BFR	 leads	to	high	decrement	of	 force	

although	 direct	 comparisons	 are	 delicate	 due	 to	 the	 difference	 of	 task	 and	 muscle	

contractions.	

The	rating	of	perceived	exertion	(RPE),	which	permits	to	describe	the	level	of	exertion	during	

physical	activity	 from	6	(no	exertion)	to	20	(maximal	exertion)	 (Borg,	1982),	points	out	the	

various	discomforts	across	conditions,	and	shows	 interestingly	a	decrease	 in	RPE-breathing	

when	BFR	increases	(see	table	2	p.69).	In	addition,	the	RPE-legs	rises	with	the	percentage	of	

BFR	applied	whereas	the	levels	of	hypoxia	do	not	seem	to	affect	the	perceived	exertion	nor	

for	 the	 breathing,	 nor	 for	 the	 legs.	 In	 this	 way,	 it	 looks	 like	 the	 limiting	 factors	 in	 RSA	

(according	to	the	RPE)	were	more	related	to	the	breathing	in	conditions	without	BFR	and	to	

the	 legs	 in	 vascular	 occlusion’s	 conditions,	 independently	 of	 the	 amount	 of	 pressure.	One	

can	justify	by	the	fact	that	BFR	is	associated	with	a	lower	number	of	sprints	and	therefore	a	

lower	 fraction	 of	 oxygen	 uptake,	 compared	 to	without	 BFR,	 where	 subjects	 have	 time	 to	

reach	higher	levels	of	VO2.	Subsequently,	the	highest	percentage	of	BFR	led	to	the	smallest	

number	of	sprints	and	thus	a	lower	time	spent	in	sprinting,	which	manifests	by	less	time	to	
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reach	or	 remain	 at	 a	 high	 level	 of	VO2	 and	 therefore	 less	 breathing	discomfort	 perceived.	

Moreover,	BFR	acted	on	the	RPE	as	attest	the	almost	maximal	values	quantified	by	subjects	

(mean	of	19.6±0.09	at	60%BFR),	proving	the	maximal	effort	of	the	legs,	which,	moreover,	is	

obtained	more	quickly	compared	to	conditions	without	BFR	where	RPE	is	lower	(17.9	(±0.4))	

and	after	a	much	more	extended	effort.	

	

According	 to	 the	 correlation	 between	 total	 work	 and	 strength	 loss	 (Δ	 MVC),	 an	 inverse	

relationship	has	been	shown	pointing	out	that	the	greatest	loss	of	force	is	associated	to	the	

smallest	amount	of	work.	 In	their	review,	Millet	&	Lepers	(2004)	mentioned	that	 fatigue	 is	

increasing	in	a	non-linear	way	over	time	until	no	further	decrease	in	knee	extensors	strength	

after	extended	running	exercises	(more	than	2	hours).		

The	current	results	go	in	an	opposite	way.	As	a	matter	of	fact,	the	greater	losses	of	strength	

were	 observed	 in	 the	 conditions	 where	 the	 smaller	 amount	 of	 work	 was	 performed	 (as	

shown	 in	 Figure	8),	 and	were	principally	 due	 to	 the	 large	 central	 fatigue	 induced	 in	 these	

conditions,	whereas	long	trials	elicited	only	slight	decrease	in	strength.	Likewise,	the	level	of	

fatigue	 (loss	 of	 strength)	 was	 directly	 related	 to	 the	 percentage	 of	 BFR	 applied	 as	 three	

different	 levels	 are	 observed,	 corresponding	 to	 the	 three	 percentage	 of	 BFR	 (Figure	 7).	

Fatela	et	al.,	 (2016)	 recently	 reported	 that	neuromuscular	 fatigue	varies	 in	 function	of	 the	

relative	 level	 of	 BFR.	 The	 present	 findings,	 as	 indicate	 the	 general	 fatigue	 markers	 (total	

work	and	MVC),	are	in	accordance	with	the	previous	statement	as	we	observe	an	increase	of	

fatigue	 as	 the	 BFR	 level	 grows.	 However,	 this	 current	 study	 shows	 that	 this	 increase	 of	

fatigue	is	independent	of	the	levels	of	hypoxia.	

Finally,	a	point	of	interest	is	that	the	condition	at	high	altitude	and	medium	BFR	(3800-45%)	

induced	a	larger	decrease	in	total	work	as	well	as	mean	power	(appendix	p.68)	compared	to	

the	following	condition	in	normoxia	and	60%BFR.	However,	a	larger	decrement	in	MVC	was	

observed	at	400-60%	compared	to	3800-45%.	Hence,	the	condition	at	3800-45%	manifests	a	

smaller	performance	compared	to	400-60%	but	at	the	same	time,	the	reduced	performance	

is	associated	to	less	fatigue.	

4.2	Central	fatigue	

4.1.1	Effect	of	BFR	and	hypoxia	on	central	fatigue	
	

Many	studies	have	been	focusing	on	fatigue	in	different	exercise	mode	and	development	of	

central	 fatigue	 has	 mainly	 been	 related	 to	 prolonged	 exercise	 (Millet	 et	 al.,	 2003,	 2002;	
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Nybo,	 2008).	Millet	 &	 Lepers	 (2004)	 showed	 that	 prolonged	 exercise	 is	 associated	with	 a	

larger	reduction	in	the	percentage	of	VAL,	especially	with	running.	

In	opposite,	the	results	of	the	current	study	show	that	central	alterations	occurred	when	the	

less	 total	work	was	performed.	 Indeed,	 the	 conditions	 at	 60%BFR	were	 the	ones	with	 the	

smallest	amount	of	work	but	with	the	greatest	amount	of	central	fatigue	(largest	decrease	in	

VAL	 and	 RMS/M).	Moreover,	 this	 largest	 decrease	 in	 VAL	 at	 60%BFR	 helps	 to	 explain	 the	

important	 loss	 of	 strength	 in	 MVC.	 There	 exists	 a	 strong	 correlation	 (r	 =	 -0.96;	 p<0.001)	

between	 these	 two	 variables	 that	 have	 been	 shown	 in	 Figure	 10	 and	 it	 appears	 that	 the	

alteration	of	the	central	component	and	loss	of	strength	are	closely	linked	to	the	percentage	

of	BFR.	Indeed,	three	distinct	levels	of	decrement	in	VAL	and	MVC	were	observed	and	each	

level	corresponded	to	the	different	percentage	of	BFR	while	hypoxia	had	no	direct	impact	on	

both	 of	 the	 variables.	 According	 to	 our	 results,	 central	 alterations	 occurred	 only	 when	 a	

certain	percentage	of	vascular	occlusion	 (60%)	was	applied	or	when	high	altitude	 (3800m)	

was	combined	with	the	medium	level	of	BFR	(45%).	

The	conditions	at	0%BFR	and	the	first	two	at	45%BFR	(400m	and	2000m)	did	not	lead	to	any	

central	 alterations	 in	 opposite	 of	 others	 studies	 that	 reported	 decrement	 in	 VAL	 already	

after	six	10s	cycling	sprints	 (Hureau	et	al.,	2015)	or	two	30m	sprints	 (Goodall	et	al.,	2015).	

The	current	results	are	a	bit	surprising,	as	one	could	expect	an	emphasized	decrease	in	VAL	

due	to	the	protocol	 to	exhaustion.	More	unexpected,	VAL	was	 increasing	from	pre	to	post	

(between	 +1.75	 to	 +2.55%)	 in	 conditions	 at	 0%BFR,	 even	 if	 these	 changes	 were	 non-

significant.	This	 is	mainly	explained	by	 the	 low	performance	of	a	 few	subjects	 that	did	not	

perform	a	true	maximal	contraction,	probably	due	to	the	discomfort	of	the	100	Hz	doublet	

nerve	stimulations.	For	example,	one	of	the	11	subjects	reached	a	VAL	of	55.2%,	64.9%	and	

52.4%	 (at	 400m,	 2000m,	 3800m,	 respectively	 and	 0%BFR)	 pre-RSA	 and	 improved	 his	

performance	 during	 the	 post-RSA	 assessment.	 Without	 taking	 in	 account	 these	

performances,	a	decrement	 in	VAL	of	about	1%	 in	these	first	 three	conditions	 is	observed.	

This	may	also	explain	the	relative	low	values	of	VAL	pre-RSA	(between	81.78%	and	85.79%)	

compared	 to	other	 studies.	 Secondly,	 the	brief	 recovery	period	 (±3min)	at	 the	end	of	RSA	

(due	to	the	measurement	of	the	blood	flow	and	the	set-up	on	the	chair)	probably	affected	

VAL,	 which	 depends	 (for	 the	 calculation)	 on	 the	 performance	 in	 MVC	 as	 well	 as	 rest	

stimulations	 (doublet	 100	Hz).	 It	 has	 been	 shown	 that	 peripheral	 (Froyd	 et	 al.,	 2013)	 and	

central	 fatigue	 (Bigland-Ritchie	 et	 al.,	 1986;	Gandevia	 et	 al.,	 1996)	 recovers	 quickly	 at	 the	

end	 of	 an	 exercise.	 Indeed,	 Froyd	 et	 al.	 demonstrated	 that	 peak	 torque	 responses	 to	

electrical	stimulation	recovered	rapidly	and	were	already	significant	after	1	min	(twitch	and	
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P10)	 and	 2	 min	 (P100,	 P10/P100)	 post	 exercise,	 as	 well	 as	 MVC,	 which	 recovered	

significantly	 within	 the	 first	 2	 min	 after	 the	 end	 of	 exercise.	 In	 addition,	 evidences	 from	

previous	 research	suggest	 that	 recovery	of	 central	 fatigue	can	occur	very	quickly	 (within	2	

min).	 Therefore,	 the	absence	of	 significant	 reduction	 in	VAL	 in	 the	 current	 study	does	not	

necessarily	reflect	an	absence	of	central	 fatigue	during	or	at	the	end	of	RSA.	This	could	be	

particularly	 true	 for	 the	 conditions	 without	 BFR,	 as	 significantly	 central	 alterations	 were	

ascertained	 in	 4	 on	 6	 conditions	 under	 BFR.	 Although	 the	 recovery	 time	 before	 the	 post	

fatigue	assessment	was	the	same	in	all	condition,	the	conditions	at	60%BFR	led	to	important	

VAL	 and	 RMS/M	 decrements,	 which	 potentially	 suggests,	 besides	 the	 effects	 of	 a	 high	

percentage	occlusion	on	 central	 fatigue,	 that	BFR	may	 slow	 the	 recovery	of	 both	 types	of	

fatigue	and	 that	 recovery	could	depend	on	 the	percentage	of	BFR.	Findings	 from	different	

studies	 (Bigland-Ritchie	 et	 al.,	 1986;	 Gandevia	 et	 al.,	 1996)	 have	 reported	 that	 complete	

vascular	occlusion	prevents	recovery	of	both	MVC	and	VAL.	Although	one	may	consider	this	

short	 recovery	period	as	a	 limit	 leading	 to	an	underestimation	of	 the	post-VAL	and	others	

fatigue	markers	values,	high	decrements	 in	central	markers	were	observed	 in	 some	of	 the	

conditions.	

The	 lower	 performance	 in	 conditions	 at	 60%BFR	 has	 been	 previously	 explained	 by	 the	

possible	 more	 accentuated	 limitation	 of	 PCr	 resynthesis	 and	 waste	 removal	 due	 to	 the	

limited	incoming	arterial	blood	flow	induced	by	the	amount	of	pressure	of	the	cuffs.	Another	

main	 point	 to	 explain	 the	 reduced	 total	 work	 and	 number	 of	 sprint	 performed	 is	 the	

premature	 appearance	 of	 fatigue	 in	 these	 conditions.	 In	 order	 to	 produce	 a	 high	 level	 of	

power	 during	 an	 all	 out	 exercise	 such	 as	 RSA,	 high	 levels	 of	muscle	 activation	 and	 neural	

drive	are	required.	The	central	markers	(decrement	in	VAL	and	RMS/M)	at	60%BFR	attest	of	

a	decline	in	the	ability	to	activate	maximally	the	muscles	although	it	is	not	possible	to	know	

if	it	is	an	inability	to	recruit	all	motor-units	or	if	the	ones	recruited	are	not	able	to	discharge	

at	their	maximal	frequency	(Belanger	and	McComas,	1981).	This	limited	activation	has	been	

observed	 in	RSA	and	 it	has	been	proposed	that	central	motor	drive	and	thus	performance	

(power	output)	may	be	self-regulated	to	prevent	peripheral	muscle	fatigue	from	rising	above	

a	tolerated	level	(Amann	and	Dempsey,	2008;	Gandevia,	2001;	Hureau	et	al.,	2014).	

4.2.2	Arc	reflexes	
	

Training	 under	 BFR	 has	 been	 associated	 to	 an	 accelerated	 accumulation	 of	 metabolites	

(increase	 in	Pi,	H+,	blood	 lactate,	and	decrease	 in	pH)	 (Scott	et	al.,	2014;	Suga	et	al.,	2012,	

2009;	 Takada	 et	 al.,	 2012),	 certainly	 linked	 to	 the	 enhanced	 recruitment	 of	 type	 II	motor	
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units	to	sustain	the	necessary	force	level	(Moore	et	al.,	2004;	Moritani	et	al.,	1992),	and	that	

are	trapped	in	the	occluded	muscle	due	to	the	cuffs	pressure	preventing	the	venous	return.	

Many	studies	have	focused	on	the	different	feedback	mechanisms	occurring	during	exercise	

to	 regulate	and	adjust	 the	physiological	 responses.	The	 role	of	muscle	afferents	 III	 and	 IV,	

which	represents	more	than	50%	of	the	total	muscle	afferents	(Laurin	et	al.,	2015),	has	often	

been	 linked	 to	 the	 development	 of	 central	 fatigue	 (Amann,	 2012,	 2011;	 Gandevia,	 2001;	

Kaufman	 and	 Forster,	 2010).	 These	 thinly	 myelinated	 (afferent	 III)	 and	 unmyelinated	

(afferent	IV)	nerve	fibers	are	projecting	to	different	sites	within	the	central	nervous	system	

and	are	stimulated	by	contraction-induced	mechanical	and	chemical	stimuli.	The	mechanical	

(type	 III)	 and	 chemical	 (Type	 IV)	 sensitive	 nature	 of	 these	 nerve	 fibers,	 although	many	 of	

them	are	poly-modal,	plays	also	a	twofold	role.	One	of	them	is	related	to	the	development	

of	the	exercise	pressor	reflex	(EPR),	which	includes	the	muscle	metaboreflex	(Boushel,	2010;	

Mitchell	et	al.,	1983)	and	the	muscle	mechanoreflex	(Victor	et	al.,	1989),	while	the	other	one	

is	an	 inhibiting	 role	 facilitating	central	 fatigue	 (Amann	et	al.,	2015;	Gandevia,	2001).	 It	has	

however	 been	 reported	 (Kaufman	 et	 al.,	 1984a;	 McCloskey	 and	 Mitchell,	 1972)	 that	 the	

metaboreflex	is	independent	of	the	central	motor	command,	even	if	they	are	both	mediated	

via	 afferents	 III/IV.	 Hence,	 EPR	 turns	 out	 to	 mediate	 autonomic	 adjustment	 of	 the	

cardiovascular	 response	 during	 an	 effort	 by	 enhancing	 sympathetic	 activity	 and	 reducing	

parasympathetic	 activity	 (Kaufman	 and	 Hayes,	 2002).	 It	 depicts	 by	 an	 increase	 in	 cardiac	

output	 (CO)	 (increase	 in	 heart	 rate	 and	 stroke	 volume)	 generating	 an	 increase	 in	 mean	

arterial	pressure	(MAP),	which	could	rise	according	to	the	intensity	of	exercise.	Augustyniak	

et	 al.	 (2001)	 suggested	 that	 the	 elevation	 of	 MAP	 during	 mild	 or	 moderate	 exercise	 is	

primarily	due	to	an	increase	in	CO.	However,	in	the	case	of	severe	exercise	where	CO	is	near	

or	at	 its	maximal	and	could	not	rise	anymore,	the	metaboreflex	would	 induce	a	peripheral	

vasoconstriction	through	sympathetic	outflow	in	order	to	redistribute	as	much	blood	flow	as	

possible	 from	 the	 periphery	 toward	 the	 skeletal	muscle.	 Interestingly,	 it	 has	 been	 studied	

that	 the	metaboreflex	 is	more	related	to	a	reduced	oxygen	delivery	than	to	a	reduction	 in	

blood	flow	(Sheriff	et	al.,	1987).	

As	 second	 component	 of	 the	 EPR	 and	with	 the	 same	 finality	 as	 the	metaboreflex	 (i.e.,	 to	

regulate	 the	 autonomic	 cardiovascular	 response	 via	 increase	 in	 sympathetic	 activity	 and	

blood	 pressure),	 the	 mechanoreflex	 is	 triggered	 by	 tissue	 compression	 during	 skeletal	

muscle	contraction	(Kaufman	et	al.,	1984b)	via	muscle	afferents	III.	Moreover,	its	response	is	

in	direct	proportion	to	exercise	intensity	as	reported	Adreani	et	al.	(1997)	and	Spranger	et	al.	

(2015).	
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Taken	together	and	in	the	context	of	the	current	study,	one	may	speculate	the	development	

of	central	fatigue	in	conditions	at	60%BFR	as	follows.	The	rapid	accumulation	of	metabolites	

that	were	trapped	within	the	muscle	due	to	BFR	as	well	as	the	tissue	contractions	due	to	the	

high	intensity	sprint	activity	and	the	external	cuffs	pressure	stimulated	the	afferents	III	and	

IV	in	order	to	adjust	the	cardiovascular	response.	Through	the	increase	in	discharge	of	these	

thin	 fiber	muscle	afferents	 inducing	EPF	 (metaboreflex	and	mechanoreflex),	an	 increase	 in	

sympathetic	outflow	led	to	an	increase	in	CO	in	order	to	elevate	the	blood	flow	delivery	to	

the	 ischemic	 skeletal	muscles.	 In	 opposite	 to	 light	 or	medium	exercise	 intensity	where	 an	

increase	 in	MAP	 is	 principally	 due	 to	 the	 augmentation	 of	 CO,	 the	maximal	 nature	 of	 the	

sprints	did	not	permit	 to	 increase	CO	sufficiently,	as	 its	 level	was	already	maximal	or	near	

maximal.	Therefore	and	as	 suggested	Augustyniak	et	al.	 (2001),	a	 compensated	peripheral	

vasoconstriction	occurred,	 so	 as	 to	 redistribute	 the	peripheral	 blood	 flow	 to	 the	occluded	

muscles	with	an	increase	in	MAP	as	consequence.	These	authors	also	observed	an	alteration	

of	the	metaboreflex	during	severe	exercise,	which	could	be	related	to	the	regulating	effect	

of	 the	 previous	 increased	 in	MAP	 by	 the	 baroreflex	 (Kim	 et	 al.,	 2005).	 The	 latter,	 via	 the	

modulation	 of	 CO	 and	 peripheral	 vasoconstriction,	 turns	 out	 to	 be	 the	 first	 short-term	

regulator	 of	 systemic	 blood	 pressure	 in	 order	 to	 maintain	 a	 stable	 MAP	 (Olivier	 and	

Stephenson,	1993).	Sheriff	et	al.	(1990)	showed	that	arterial	baroreflex	denervation	doubled	

the	 pressor	 responses	 during	mild	 exercise	 compared	 to	 when	 baroreflex	 was	 intact	 and	

where	pressure	was	normally	regulated.	Moreover,	Kim	et	al.	completed	the	discussion	by	

suggesting	 that	 the	major	mechanism	 by	which	 the	 arterial	 baroreflex	 buffers	 the	muscle	

metaboreflex	 is	 through	 an	 inhibition	 of	 the	 induced	 peripheral	 vasoconstriction.	 In	 any	

case,	 the	 effect	 of	 the	 baroreflex	 against	 the	 metaboreflex	 should	 lead	 to	 a	 progressive	

decrement	 in	MAP,	 with	 as	 consequences	 a	 reduction	 of	 CO	 and	 therefore	 reductions	 in	

blood	flow.	Freezing	afferents	III	and	IV	have	been	shown	to	reduce	oxygen	delivery	through	

a	 lower	blood	flow	as	well	as	a	faster	peripheral	fatigue	development	(Amann	et	al.,	2011,	

2010).	Moreover,	 responses	 to	 exercise	 from	 afferents	 III	 and	 IV	 have	 been	 proved	 to	 be	

larger	 in	 absence	 of	 the	 baroreflex	 (Kim	 et	 al.,	 2005;	 Sheriff	 et	 al.,	 1990).	 Reflecting	 the	

previous	 arguments	 and	 referring	 to	 Amann	 et	 al.	 (2015),	 the	 development	 of	 peripheral	

fatigue	 could	be	 exacerbated	 and	 linked	 to	 the	manifestation	of	 the	baroreflex.	However,	

other	findings	could	contradict	the	previous	arguments	as	it	has	been	shown	in	cats	that	the	

baroreflex	 modulates	 the	 EPR	 response	 without	 changing	 muscle	 blood	 flow	 during	

muscular	contraction	(Waldrop	and	Mitchell,	1985).	It	could	be	therefore	argued,	depending	

on	 the	 validity	 of	 this	model	 in	 human,	 that	 the	 activity	 of	 baroreflex	 does	 not	 affect	 the	
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development	of	peripheral	fatigue,	as	the	blood	flow	remains	unaffected.	In	this	context,	it	

is	interesting	to	report	that	maximal	heart	rate	(Figure	22	in	appendix)	in	the	current	study	

was	 always	 lower	 in	 conditions	 under	 BFR.	Moreover,	 the	 highest	 percentage	 of	 BFR	was	

associated	with	 the	 lowest	heart	 rate.	Although	 it	 could	be	due	 to	 the	 reduced	 total	work	

and	 thus	 the	 lower	 time	 spent	 exercising	 at	 high	 intensity,	 an	 effect	 of	 the	 baroreflex	

inducing	a	decrease	in	MAP	and	CO	may	also	be	speculated.	Subsequently,	it	is	possible	that	

the	response	of	EPR,	even	if	 limited	or	countered	by	the	baroreflex,	was	still	 insufficient	to	

re-oxygenate	 the	 ischemic	 skeletal	 muscle	 due	 to	 BFR,	 which	 limited	 the	 incoming	 blood	

flow.	Therefore	and	in	accordance	with	the	concept	that	central	fatigue	aims	at	limiting	the	

development	of	peripheral	 fatigue,	muscle	afferents	 III	and	 IV	completed	their	second	role	

they	have	been	associated	to,	which	is	to	reduce	central	command	via	their	inhibitory	effect	

on	the	output	from	spinal	motoneurons,	having	thus	as	consequences	a	reduction	in	muscle	

activation	and	leading	to	task	failure	(Amann	et	al.,	2013,	2009,	2008;	Bigland-Ritchie	et	al.,	

1986;	Gandevia	et	al.,	1996).		

Figure	 17	 resumes	 the	 mechanisms	 of	 the	 metaboreflex	 leading	 to	 an	 increase	 of	 blood	

pressure.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	17.	Schematic	representation	of	putative	mechanisms	by	which	the	metaboreflex	operates	to	increase	
blood	pressure.	Piepoli,	Dimopulos,	Crisafulli	Int.	J.Cardiol.	2008,	130:	3-10.	
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The	Figure	18	below	is	a	speculated	model	leading	to	reduction	in	central	drive	in	conditions	

at	60%BFR	and	3800-45%.	

	

	

	

In	a	 first	 instance,	 the	EPR	reflex	occurred	 in	order	 to	 increase	 the	blood	 flow	and	oxygen	

delivery	into	the	ischemic	muscle,	via	the	response	of	muscle	afferents	III	and	IV.	However,	

BFR	 (by	 restricting	 the	 incoming	blood	 flow)	shunted	 the	effect	of	 the	EPR,	which	 led	 to	a	

Figure	18.	Potential	mechanism	of	central	fatigue	leading	to	exhaustion	or	task	failure	in	condition	at	60%BFR	
and	3800-45%.	EPR:	exercise	pressor	reflex;	CO:	cardiac	output;	MAP:	mean	arterial	pressure	
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necessary	reduction	in	the	central	command	in	order	to	limit	the	development	of	peripheral	

fatigue.	

As	 stated	 earlier,	 the	 condition	 at	 high	 altitude	 and	 mid	 BFR	 (3800-45%)	 also	 led	 to	 a	

significant	(P<0.05)	decrease	in	VAL	but	not	in	RMS/M.	It	is	interesting	because	a	cumulative	

effect	 of	 a	 high	 level	 of	 hypoxia	 and	 medium	 level	 of	 occlusion	 is	 observed,	 as	 other	

conditions	at	this	percentage	of	BFR	did	not	affect	VAL.	According	to	the	speculated	previous	

model	and	to	other	researches,	the	metaboreflex	has	been	shown	to	be	more	triggered	by	a	

reduced	oxygen	delivery	than	by	a	reduction	in	blood	flow	(Sheriff	et	al.,	1987).	The	finality	

is	 notwithstanding	 the	 same,	 as	 a	 reduction	 in	 blood	 flow	 through	 BFR	 is	 associated	 to	 a	

decrease	 in	 oxygen	 delivery.	 However,	 the	 supposed	 cumulative	 effect	 of	 a	 high	 level	 of	

hypoxia	and	mid-BFR	may	manifest	as	an	amplified	muscle	deoxygenation	through	systemic	

hypoxia	 and	 localized	 ischemia.	 One	 may	 consequently	 hypothesize	 that	 the	 autonomic	

regulations,	 via	 reflex	 arcs,	 did	 not	 achieve	 to	 deliver	 sufficient	 oxygen	 supply	 to	 the	

ischemic	muscle	 due	 to	 the	 lowest	 FiO2,	which	 is	 in	 addition	 limited	 by	 the	 effect	 of	 BFR	

(even	 if	 the	 pressure	 is	 smaller).	 In	 view	 of	 the	 progressive	 accumulation	 of	 metabolites	

accordingly	to	the	hypoxic	environment	within	the	ischemic	muscle,	afferents	III	and	IV	(via	

their	 inhibitory	effect	on	the	spinal	motoneurons)	reduce	the	central	command	in	order	to	

limit	the	development	of	peripheral	fatigue.		

	

To	briefly	 resume	this	part,	 the	supposed	mechanisms	are	that	arc	 reflexes	 try	 to	regulate	

and	adjust	the	cardiovascular	response	in	order	to	 increase	the	blood	flow	and	the	oxygen	

delivery	to	the	muscle	but	the	shunting	effect	of	BFR	does	not	permit	a	sufficient	increase	of	

blood	 flow,	 leading	 to	 a	 decrease	 in	 central	 drive	 to	 protect	muscles	 from	 an	 irreversible	

development	 of	 peripheral	 fatigue.	 Although	 the	 assessment	 of	 fatigue	 was	 realized	 3	

minutes	after	the	end	of	RSA,	allowing	subjects	to	recover,	large	decrements	in	VAL	in	4	on	9	

conditions	 were	 observed.	 This	 is	 potentially	 because	 of	 spinal	 motoneurons	 output	 and	

muscle	 activation	 remain	 low	 until	muscles	 afferents	 III	 and	 IV	 recovered,	which	 depends	

amongst	others	on	the	restoration	of	the	blood	circulation	(Amann	et	al.,	2015;	Gandevia	et	

al.,	1996;	Taylor	et	al.,	2000).	

In	the	current	study,	central	fatigue	was	principally	linked	to	muscles	afferents	III	and	IV	but	

it	 is	 important	 to	 report	 also	 that	 alterations	of	 central	motor	 command	 can	be	 triggered	

from	 other	 sites	 and	 independently	 of	 somatosensory	 feedback	 (Amann	 et	 al.,	 2007;	

Gandevia,	2001).	Evidences	suggest	that	low	O2	availability	in	the	brain	might	lead	to	central	

fatigue.	 There	 are	 indeed	 several	 central	 oxygen-sensitive	 sites	 that	 adjust	 and	 regulate	
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sympathetic	and	respiratory	activity	and	which	are	situated	in	the	thalamus,	hypothalamus,	

pons,	 and	 medulla	 (Neubauer	 and	 Sunderram,	 2004).	 In	 this	 way,	 decrease	 in	 cerebral	

oxygenation	has	been	showed	to	induce	central	alterations	(Goodall	et	al.,	2012;	Nybo	and	

Rasmussen,	2007),	even	though	several	homeostatic	mechanisms	are	implemented	to	avoid	

low	 brain	 oxygenation	 (Miyamoto	 and	 Auer,	 2000).	 Hence,	 the	 brain	 is	 protected	 against	

hypoxia	 at	 rest	 because	 of	 an	 increase	 in	 cerebral	 blood	 flow	 (CBF)	when	 arterial	 tension	

becomes	 low.	 However,	 hyperventilation	 induced	 by	 strenuous	 exercise	 can	 restrain	 an	

increase	in	CBF	due	to	the	high-induced	arterial	carbon	dioxide	pressure	(PCO2),	which	can	

lead	to	a	reduced	cerebral	perfusion	that	contributes	to	the	development	of	central	fatigue	

(Nybo	and	Rasmussen,	2007).	Smith	and	Billaut	(2010)	reported	critical	changes	in	cerebral	

oxygenation	 in	hypoxia	 (FiO2	=	0.13)	during	10	 sprints	of	10s	with	30s	 recovery.	They	also	

observed	that	these	changes	did	not	occur	in	normoxic	condition	(FiO2	=	0.21)	and	suggested	

that	 hypoxia	 influences	 prefrontal	 cortex	 (but	 not	muscle)	 oxygenation	 during	 RSA,	which	

could	 explain	 the	 lower	 mechanical	 work	 they	 observed	 in	 hypoxia.	 Finally,	 a	 potential	

combination	 of	 different	 mechanisms	 is	 also	 practicable.	 A	 lower	 brain	 oxygenation	 can	

potentially	lead	to	central	fatigue	but	this	phenomenon	could	be	majored	by	the	stimulation	

of	 afferents	 III	 and	 IV	 due	 to	 the	 accumulation	 of	metabolites	 (as	 proposed	 in	 the	model	

above).		

However,	our	results	did	not	show	any	effect	of	hypoxia	 in	any	markers	of	central	 fatigue.	

Firstly,	 one	 can	 debate	 if	 the	 level	 of	 hypoxia	 was	 high	 enough	 to	 elicit	 any	 central	

alterations.	Goodall	et	al.	(2012)	used	in	their	study	the	same	altitude	level	(3800m)	but	with	

different	exercise	modalities	 (constant-load	cycling	exercise)	and	 they	noticed	a	 significant	

manifestation	of	 central	drive	with	a	 supraspinal	origin	of	 fatigue.	Researchers	observed	a	

decline	 in	 cortical	 activation	 in	 parallel	 with	 reductions	 in	 cerebral	 oxygen	 delivery	 and	

oxygenation	and	explained	the	decrease	 in	exercise	performance	 in	hypoxia	by	a	potential	

suboptimal	output	from	the	motor	cortex	as	consequences	of	reduced	oxygen	availability	in	

the	brain.	

Secondly,	 the	delay	between	 the	end	of	 the	 task	and	 the	assessment	of	 fatigue	may	have	

been	too	long	to	assess	central	fatigue.	As	stated	several	times,	the	recovery	elapses	quickly	

at	 the	 end	 of	 the	 task	 (1-3	minutes)	 and	 we	 potentially	 evaluated	 the	 fatigue	 at	 a	 point	

where	 central	 alterations	 already	 recovered,	 especially	 in	 conditions	without	 BFR.	 Thirdly,	

the	impact	of	BFR	may	have	potentially	blunted	the	effect	of	hypoxia,	according	to	his	strong	

effect	on	the	fatigue	development.	
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Hence,	we	showed	that	central	fatigue	occurred	in	4	on	9	conditions.	These	four	conditions	

included	 the	highest	 level	of	BFR	and	 the	highest	 level	of	hypoxia	combined	with	medium	

BFR.	 Although	 the	 period	 between	 the	 end	 of	 RSA	 and	 the	 fatigue	 assessment	 was	 long	

enough	to	elicit	recovery,	the	latter	was	limited	in	some	conditions	probably	because	of	the	

continuous	presence	of	BFR	during	this	lapse	of	time.	Consequently,	we	cannot	totally	refute	

the	 potential	 existence	 of	 a	 central	 fatigue	 induced	 in	 other	 conditions	 (without	 BFR	

particularly),	which	may	have	manifested	from	other	origins	than	the	model	we	speculated	

previously.		

4.3	Peripheral	fatigue	
	

The	 peripheral	 fatigue	 was	 ascertained	 with	 the	 different	 markers	 (twitch,	 P10,	 P100,	

P10/P100,	 M-wave)	 and	 no	 particular	 variations	 between	 conditions	 were	 observed.	

Interestingly,	 the	 current	 results	 showed	 that	 almost	 the	 same	 level	 of	 peripheral	 fatigue	

was	reached	across	conditions.	

4.3.1	Muscle	excitability	
	

First	of	all,	the	only	peripheral	index	that	did	not	change	in	any	condition	was	the	M-wave.	

Indeed,	 we	 have	 shown	 that	 nor	 hypoxia	 or	 BFR,	 whatever	 their	 levels,	 impacted	 the	M-

wave,	 demonstrating	 no	 alterations	 in	 membrane	 excitability	 after	 RSA	 to	 exhaustion.	

Alteration	of	the	M-wave	can	be	the	reflect	of	changes	of	the	nervous	conduction,	synaptic	

transmission	or	related	to	the	conduction	at	the	sarcolemma	level	(Duchateau	and	Hainaut,	

1985).	 It	 suggests	 consequently	 that	 alterations	 leading	 to	 peripheral	 fatigue	 occurred	

beyond	 the	 sarcolemma.	 Researches	 on	 RSA	 focusing	 on	 neuromuscular	 activity	 have	

mentioned	varied	variations	on	the	M-wave.	Whereas	some	of	them	(Racinais	et	al.,	2007)	

showed	 an	 increase	 in	M-wave,	 some	 others	 reported	 a	 steady	 level	 (Billaut	 et	 al.,	 2013;	

Girard,	Bishop	&	Racinais,	2013;	Hureau	et	al.,	2015)	or	a	decrease	(Perrey	et	al.,	2010)	after	

RSA.	

4.3.2	Evoked	forces	and	performance	of	the	contractile	apparatus	
	

In	 the	 current	 study,	 the	 twitch	 evoked	 by	 nerve	 stimulation	 was	 reduced	 after	 exercise	

from	 26%	 to	 47%	 in	 function	 of	 the	 conditions,	 while	 no	 significant	 changes	 of	 the	

contraction	 time	 (CT)	 and	 half	 relaxation	 time	 (HRT)	 were	 observed.	 In	 the	 studies	 cited	
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previously	 (Perrey	 et	 al.;	 Racinais	 et	 al.),	 researchers	 noted	 alterations	 of	 the	 twitch	 after	

RSA	of	9%	to	15%,	while	Girard	et	al.	showed	that	twitch	was	reduced	by	more	than	40%.	

Referring	to	the	previous	authors,	these	variations	may	have	been	provoked	by	differences	

in	subjects,	in	protocol	(nature	of	exercise,	timing	of	the	assessment,	muscle	groups),	as	well	

as	 in	stimulation	characteristics.	As	 for	other	measurements,	 the	biggest	decrements	were	

observed	 in	 conditions	 at	 60%BFR	 but	 the	 difference	 between	 conditions	were	minor.	 To	

illustrate,	the	amplitude	of	the	twitch	decreased	by	47.5%,	45.2%,	46.1%	at	400m,	2000m,	

and	 3800m	 respectively	 compared	 to	 38.4%,	 42.6%,	 26.4%	 without	 BFR	 and	 at	 400m,	

2000m,	and	3800m,	while	condition	at	45%BFR	lies	in	between	these	values.	The	reduction	

in	the	amplitude	of	the	twitch	is	caused,	referring	to	Westerblad	&	Allen,	by	a	combination	

of	 reduced	 calcium	 (Ca2+)	 sensitivity	 of	 the	 myofilaments	 (myosin	 and	 actin),	 reduced	

maximum	 tensing-generating	 capacity,	 and	 reduced	 Ca2+	 release	 from	 the	 sarcoplasmic	

reticulum.	

Stimulations	 of	 different	 frequencies	 (100Hz	 and	 10Hz)	 were	 used	 in	 order	 to	 assess	 the	

origin	of	the	peripheral	fatigue.	High	frequency	fatigue	(HFF)	is	determined	by	a	decrease	in	

torque	elicits	by	high	frequency	stimulations,	whereas	low	frequency	fatigue	(LFF)	consist	in	

a	force	decrement	elicits	by	low	frequency	stimulations.	Both	types	of	stimulation	decreased	

post-RSA	and	 in	all	 the	conditions	as	attests	 the	 ratio	P10/P100.	Moreover,	 these	markers	

were	altered	by	RSA	but	with	minor	influences	of	BFR	and	hypoxia.	While	the	ratio	P10/P100	

was	 absolutely	 not	 affected	 by	 any	 of	 the	 conditions,	 P10	 underwent	 only	 the	 effect	 of	

hypoxia	 in	one	condition,	whereas	P100	fluctuated	a	bit	more	across	conditions.	Thus,	 the	

evolution	 of	 the	 ratio	 P10/P100	 implies	 a	more	 pronounced	 decrement	 of	 LFF	 (P10)	 than	

HFF	after	RSA	to	exhaustion,	independently	of	BFR	and	hypoxia.	This	result	is	in	concordance	

with	other	studies	(Hureau	et	al.,	2015;	Rampinini	et	al.,	2014)	that	reported	more	intense	

degradation	of	LFF	compared	to	HFF	after	RSA,	although	LFF	has	often	been	a	characteristic	

of	 eccentric	 contractions	 and	 stretch	 shortening	 cycle	 exercises	 (Martin	 et	 al.,	 2004).	

Edwards	 et	 al.	 (1977)	 pointed	 out	 the	 main	 features	 of	 LFF	 and	 noted	 that	 this	 type	 of	

fatigue	persists	for	a	much	longer	period	of	time	(up	to	24h	after	exercise)	compared	to	HFF	

that	 recovers	 in	a	couple	hours	 (1-2),	 implying	consequently	different	origins	of	peripheral	

fatigue.	Hence,	HFF	has	been	associated	to	an	extra-cellular	accumulation	of	K+	while	LFF	is	a	

failure	 in	 the	 excitation-contraction	 coupling	 due	 to	 a	 reduction	 of	 Ca++	 release	 (Jones,	

1996).	It	has	been	suggested,	referring	to	Girard	et	al.	that	the	accumulation	of	Pi	could	alter	

the	calcium	release	 from	the	sarcoplasmic	reticulum	and/or	affect	 the	myofibrillar	calcium	
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sensitivity.	These	potential	phenomenon	proved	 in	vitro	 could	 limit	 the	 force	of	 the	cross-

bridges	or	limit	their	number	(Dutka	and	Lamb,	2004;	Westerblad	et	al.,	2002).	

4.3.3	Effect	of	BFR	and	hypoxia	on	peripheral	fatigue	
	

The	 results	 of	 the	 present	 study	 have	 shown	 alterations	 at	 the	 peripheral	 level	 and	more	

specifically	beyond	the	sarcolemma	and	are	linked	to	a	failure	in	the	excitation	contraction	

coupling	potentially	due	to	a	reduction	in	Ca2+	release.	

It	 is	 interesting	to	report	that	peripheral	 fatigue	has	almost	never	been	affected	by	BFR	or	

hypoxia,	as	about	the	same	level	of	peripheral	fatigue	was	reached	across	conditions.	

However,	 BFR	 and	 hypoxia	 seems	 to	 have	 a	 time	 effect	 as	 the	 same	 level	 of	 peripheral	

fatigue	was	reached	but	with	five	times	less	total	work	in	some	conditions.	The	correlation	

graph	 in	 the	 result	 section	 illustrates	 the	 relationship	 between	 VAL,	 P10/P100	 and	 total	

work.	 Interestingly,	 the	 central	marker	 of	 fatigue	was	 highly	 correlated	 to	 the	 total	 work	

(diminution	of	VAL	with	the	reduction	of	total	work),	whereas	the	ratio	P10/P100	followed	

almost	a	linear	flat	relationship	(close	to	a	zero	slope).	Furthermore,	the	ratio	P10/P100	was	

not	 significantly	 correlated	 to	 the	 total	work,	 showing	 that	 peripheral	 fatigue	 develops	 at	

about	 the	 same	 level	 in	 all	 conditions	 but	 with	 the	 feature	 that	 the	 rate	 of	 fatigue	

development	is	accelerated	when	the	total	work	is	reduced.	In	other	words,	BFR	or	hypoxia	

do	not	exacerbate	the	peripheral	fatigue	but	affect	its	rate	of	development.	

	

Metabolites	accumulation	

	

According	 to	our	 results,	 the	 rate	of	development	 (but	not	 the	 level)	of	peripheral	 fatigue	

was	principally	fastened	with	BFR.	Although	the	specific	mechanisms	underlying	BFR	are	not	

yet	clear,	benefits	resulting	from	training	under	vascular	occlusion	are	believed	to	be	related	

to	 an	 increase	 of	 the	 accumulation	 of	 metabolites,	 anabolic	 hormone	 concentrations,	

intramuscular	 signaling	 and	 swelling	 as	 well	 as	 motor	 unit	 recruitment	 (Loenneke	 et	 al.,	

2012;	Takano	et	al.,	2005;	Takarada	et	al.,	2000a).	 Indeed,	a	greater 	  metabolic 	  stress 	have	

been	observed 	in	resistance	training	under	BFR,	which	manifests	with	an	increase	in	Pi,	PCr	

 depletion	and	pH	reduction	(Suga	et	al.,	2009),	as	well	as	an	increase	in	lactate	production	

(Pierce	et	al.,	2006).	In	brief,	it	is	thought	that	training	with	blood	flow	restriction	makes	the	

metabolism	 more	 anaerobic	 and	 similar	 to	 high	 intensity	 exercise.	 Hence,	 in	 the	 case	 of	

maximal	intensity	exercise	such	as	repeated	sprints,	the	accumulation	of	metabolites	(Pi,	H+)	

can	occur	even	when	performed	in	normoxia	or	without	BFR.	We	could	then	speculate	that	
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an	accumulation	is	exacerbated	due	to	the	blocked	venous	return	that	limits	the	metabolites	

waste	 removal.	 Indeed	 and	 oppositely	 to	 RSA	 in	 normoxia	 where	 aerobic	 contribution	

increases	over	sprint	repetitions,	the	hypoxemia	induced	by	BFR	and	the	progressive	muscle	

deoxygenation	potentially	limits	the	contribution	of	the	aerobic	metabolism.	In	addition,	the	

contribution	 of	 type	 II	 fibers,	mainly	 recruited	 in	 high	 intensity	 effort,	may	 decrease	 over	

sprint	 repetitions,	 as	 they	 are	 also	more	 susceptible	 to	 fatigue.	 In	 that	 case,	 performance	

would	be	more	determined	by	 the	 type	 I	 fiber,	which	 is	more	 resistant	 to	 fatigue	but	 can	

produce	less	force.	This	change	in	metabolism	has	been	observed	by	Karatzaferi	et	al.	(2001)	

and	could	be	limited	in	conditions	with	BFR,	where	the	unavailability	of	oxygen	restricts	the	

contribution	of	oxidative	fiber,	increasing	the	reliance	on	anaerobic	metabolism	to	produce	

energy	with,	in	counterpart,	a	production	and	an	accumulation	of	metabolites.	The	systemic	

hypoxia	 could	 potentially	 have	 the	 same	 effect	with	 the	main	 difference	 that	 the	 venous	

return	is	not	occluded,	which	allows	a	better	waste	removal	compared	to	BFR	conditions.	                                                                                        	

Although	studies	have	reported	increases	in	blood	lactate	post	BFR	exercise,	our	results	(see	

figure	 21	 p.69	 in	 appendix)	 have	 shown	 the	 opposite.	 As	 a	 matter	 of	 fact,	 conditions	 at	

60%BFR	elicited	the	smallest	blood	lactate	values	(8.6,	7.9,	6.9	for	400m,	2000m	and	3800m,	

respectively)	while	 0%BFR	 elicited	 the	 highest	 ones	 (9.5,	 11.6,	 10.7	 for	 400m,	 2000m	and	

3800m,	 respectively)	 and	 with	 45%BFR	 in	 between	 (7.2,	 9.3,	 9.0	 for	 400m,	 2000m	 and	

3800m,	 respectively).	 The	 lactate	 values	 have	 been	 reported	 (Dassonville	 et	 al.,	 1998)	 to	

vary	 in	function	of	the	sampling	sites.	According	to	the	fact	that	the	blood	lactate	samples	

were	 collected	 at	 the	 earlobe,	 our	 results	 may	 not	 be	 representative	 of	 the	 lactate	

concentration	within	the	working	muscles.	

	

Limitation	of	energy	supply	

	

This	 topic	 has	 been	 approached	 in	 the	 first	 part	 of	 the	 discussion	 with	 in	 particular	 the	

importance	 of	 PCr	 resynthesis,	 which	 is	 probably	 limited	 in	 BFR	 (and	 hypoxia)	 conditions	

because	of	its	oxygen	dependent	nature.	

The	limitation	of	energy	supply	has	been	pointed	out	in	RSA	and	could	be	aggravated	by	BFR	

and	hypoxia.	The	potential	role	of	BFR	and	hypoxia	on	energy	supply	could	to	be	 linked	to	

the	re-oxygenation	rate	during	the	recovery	intervals.	

Different	studies	on	RSA	have	availed	the	NIRS	(Near	Infrared	Spectroscopy)	to	measure	the	

oxygen	availability	in	the	working	muscle.	Hence,	a	steady	level	of	deoxygenation	(increase	

in	deoxyhemoglobin)	during	10	seconds	sprints	(30	seconds	recovery)	has	been	reported	by	
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Smith	and	Billaut	(2010),	showing	that	the	capacity	to	use	oxygen	was	preserved	during	10	

sprints.	However,	Racinais	et	al.	(2007)	demonstrated	a	progressive	muscle	deoxygenation	in	

the	 same	modalities	 (10x6s	 sprints	 and	 30s	 recovery)	 of	 exercise,	 although	 they	 reported	

also	that	oxygen	extraction	was	not	 impaired.	According	to	the	current	study,	 it	 is	possible	

that	the	smaller	ratio	used	led	to	a	progressive	muscle	deoxygenation.	Additionally,	hypoxia	

as	well	as	BFR	may	have	affected	the	kinetic	of	re-oxygenation	by	restricting	the	delivery	of	

oxygen.	This	would	be	supported	by	the	study	of	Billaut	and	Buchheit	(2013)	who	showed	a	

decline	in	the	muscular	re-oxygenation	in	hypoxic	conditions	(FiO2	=	0.13)	during	RSA.		

Hence,	 this	 limitation	 of	 the	 muscle	 re-oxygenation	 under	 BFR	 and/or	 in	 hypoxia	 may	

emphasize	 the	 reliance	 on	 anaerobic	 metabolism	 as	 well	 as	 limit	 the	 resynthesis	 of	 PCr,	

which	is	dependent	on	oxygen.	

To	 conclude,	 many	 studies	 proposed	 that	 development	 of	 peripheral	 fatigue	 is	 closely	

controlled	 not	 to	 exceed	 a	 certain	 level	 and	 could	 be	 limited	 by	 the	 apparition	 of	 central	

fatigue	(Amann	et	al.,	2013,	2009;	Amann	and	Dempsey,	2008;	Hureau	et	al.,	2015,	2014).	

Although	central	 fatigue	was	not	observed	 in	all	condition,	possibly	due	to	methodological	

issues,	the	almost	same	level	of	peripheral	fatigue	was	reached	at	task	failure	or	exhaustion	

in	 all	 conditions,	 reinforcing	 the	 idea	 that	 development	 of	 peripheral	 fatigue	 is	 closely	

controlled	by	central	mechanisms.	

As	a	 reminder,	our	hypotheses	were	 that	 i)	peripheral	and	central	 fatigue	 is	 induced	 in	all	

conditions;	 ii)	 the	 level	 of	 peripheral	 fatigue	 is	 independent	 on	 the	 level	 of	 occlusion	 and	

hypoxia,	contrary	to	central	 fatigue;	 iii)	BFR	 leads	to	stronger	detrimental	effect	on	central	

fatigue	than	hypoxia.	

According	 to	our	 results,	we	did	not	observe	 central	 fatigue	 in	 all	 conditions	 and	our	 first	

hypothesis	needs	therefore	to	be	shaded.	We	can	nevertheless	validate	our	2nd	hypothesis,	

as	 we	 show	 a	 steady	 level	 of	 peripheral	 fatigue	 across	 conditions,	 whereas	 central	

alterations	occurred	in	specific	situations	only	(conditions	at	60%BFR	and	3800-45).	We	also	

observed	 that	 BFR	 leads	 to	 stronger	 effect	 on	 central	 fatigue	 in	 accordance	 with	 our	 3rd	

hypothesis.	

5.	PRACTICAL	RECOMMENDATIONS	
	

First	of	all,	this	study	is	only	a	first	step	on	the	topic	BFR,	hypoxia	and	repeated	sprints	and	

other	studies	are	therefore	needed	to	evaluate	the	best	modalities	of	exercise.	However,	the	

results	 obtained	 in	 the	 current	 study	 have	 already	 a	 particular	 interest	 for	 practical	

applications.	
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One	of	the	first	point,	and	several	authors	already	highlighted	it,	is	to	prescribe	an	individual	

pressure	based	on	the	arterial	blood	flow	when	using	BFR,	as	the	physiological	responses	are	

highly	fluctuating	in	function	of	the	percentage	applied	but	also	according	to	inter-individual	

variations.	Our	results	show	that	a	too	high	 level	of	BFR	 is	not	recommendable	because	of	

the	high	central	fatigue	induced.	In	addition,	our	results	suggest	that	central	alterations	can	

also	manifest	when	combining	a	high	level	of	hypoxia	with	a	lower	level	of	BFR.		

Therefore,	 it	 seems	 to	 be	more	 rational	 to	 use	 a	 lower	 percentage	 of	 BFR	 (such	 as	 45%),	

where	less	central	fatigue	is	observed	and	where	the	effort	can	be	sustained	longer.		

Then,	 it	 is	 important	to	take	 into	consideration	that	repeated	sprints	with	BFR	particularly,	

can	cause	important	fatigue	state,	even	when	few	sprints	are	performed.	As	we	have	shown,	

the	 level	 of	 peripheral	 fatigue	 was	 about	 the	 same	 but	 with	 five	 times	 less	 total	 work	

between	 condition	 in	 normoxia	 without	 BFR	 and	 high	 hypoxia	 combined	 with	 60%BFR.	

Therefore,	it	should	be	avoided	prescribing	RSA	with	BFR	based	on	RSA	studies	in	normoxia	

and	without	BFR.	Other	studies	should	be	first	engaged	to	determine	the	best	modalities	of	

training	using	BFR	in	RSA.	

For	 now,	 the	 condition	 in	 mid	 hypoxia	 (2000m)	 and	 mid	 BFR	 (45%)	 seems	 to	 be	 a	 good	

compromise	between	the	level	of	fatigue	reached	and	the	performance	in	repeated	sprints.	

Other	 characteristics	 are	 also	 to	 take	 into	 consideration	 (cardiovascular,	 respiratory	

components)	in	order	to	design	a	training	combining	RSA	and	BFR.		

6.	STRENGTHS	AND	LIMITATIONS	
	

Some	 of	 the	 limits	 have	 already	 been	 discussed	 previously.	 The	 main	 one	 is	 that	 the	

assessment	 of	 fatigue	 was	 not	 executed	 directly	 at	 the	 end	 of	 RSA	 and	 that	 this	 brief	

recovery	period	may	surely	have	led	us	to	an	underestimation	of	our	results.	

Another	point	is	that	only	one	assessment	of	fatigue	was	executed	Pre	and	Post.	As	exposed	

in	 the	 discussion,	 some	 measurements	 of	 the	 MVC	 “pre”,	 which	 was	 also	 used	 for	 the	

calculation	 of	 VAL	 and	 RMS/M,	 were	 sometimes	 not	 a	 truly	 maximal	 contraction.	 As	 the	

protocol	was	long	and	tough,	we	were	compelled	to	make	the	assessment	only	once	pre	and	

post,	which	may	have	affected	our	results.	

Then,	the	method	used	in	order	to	assess	central	fatigue	(twitch	interpolation	technique)	did	

not	allow	do	determine	 the	exact	 sites	 inducing	 central	 fatigue.	 It	would	be	 interesting	 to	

replicate	 this	 study,	 using	 TMS	 in	 parallel	 of	 neurostimulation,	 in	 order	 to	 explore	 the	

possible	different	origins	of	fatigue	between	BFR	and	hypoxia.	



	 55	

Finally,	we	could	only	speculate	on	 the	accumulation	of	metabolites,	as	we	did	not	collect	

blood	samples,	which	could	be	another	aim	of	a	future	study.	

However,	 this	study	 is	a	new	innovating	step	 in	the	field	of	RSA	and	high	 intensity	 interval	

training	and	we	are	 the	 first	 to	 investigate	 this	 topic.	The	study	was	massive	and	 included	

110	visits	at	the	laboratory	in	order	to	compare	the	different	physiological	responses	during	

the	 trials	 and	 was	 realized	 in	 trained	 women	 and	men.	 Each	 session,	 lasting	 for	 about	 3	

hours,	 was	 employing	 high	 technology	 devices,	 which	 allowed	 us	 to	 investigate	 a	 lot	 of	

physiological	components	accurately	(neuromuscular	fatigue,	cardiorespiratory	component,	

muscular	and	brain	oxygenation	as	well	as	local	and	systemic	blood	flow)	in	RSA	as	well	as	in	

submaximal	exercise.	We	were,	moreover,	able	to	individualize	BFR	for	each	subject	instead	

of	 working	 with	 fixed	 amount	 of	 pressure,	 giving	 in	 this	 way	 more	 consistency	 to	 the	

physiological	responses.		

Although	it	 is	only	a	first	step	in	the	topic,	the	combination	of	these	environmental	stimuli	

(hypoxia	and	BFR),	which	have	proved	their	benefits	individually,	is	definitely	an	innovating	

and	challenging	project	that	will	need	future	researches.	

7.	CONCLUSION	
	

The	 current	 aimed	 to	 assess	 the	 neuromuscular	 fatigue	 in	 performing	 cycling	 repeated	

sprints	to	exhaustion	with	various	levels	of	hypoxia	and	blood	flow	restriction.		

According	 to	 the	 results,	 we	 showed	 that	 performance	was	 decreased	when	 hypoxia	 and	

BFR	was	added,	with	a	particular	effect	of	vascular	occlusion.	Exhaustion	or	task	failure	was	

therefore	reached	much	faster	in	conditions	under	BFR	(with	a	detrimental	effect	of	a	higher	

level	of	BFR)	and	hypoxia	to	a	lesser	extent.	Results	indicated	that	a	high	level	of	BFR	allows	

the	 performance	 of	 a	 limited	 number	 of	 sprints,	 principally	 due	 to	 the	 manifestation	 of	

central	fatigue,	which	has	been	proposed	to	limit	the	development	of	peripheral	alterations.	

In	 these	 conditions,	 no	 differences	 were	 observed	 when	 higher	 levels	 of	 hypoxia	 were	

added,	 and	 one	 can	 therefore	 assume	 that	 a	 high	 percentage	 of	 BFR	 blunts	 the	 effect	 of	

hypoxia.	The	current	study	also	indicated	that	a	high	level	of	hypoxia	combined	with	a	lower	

percentage	of	occlusion	led	to	high	decrements	in	performance,	as	was	shown	with	a	link	to	

central	drive	alterations.	Additionally,	the	same	level	of	peripheral	fatigue	was	reached	in	all	

conditions	and	low	frequency	fatigue	was	much	more	affected	than	high	frequency	fatigue.		

To	conclude,	the	results	of	the	current	study	were	in	agreement	with	arguments	proposing	a	

regulation	of	exercise	by	central	mechanisms	in	order	to	limit	the	development	of	a	too	high	

and	irreversible	level	of	peripheral	fatigue.	
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9.	APPENDIX	

Appendix	1.	Consent	Form	
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Toute modification est interdite. Nous vous encourageons à copier le Q-AAP dans sa totalité.

1. Votre médecin vous a-t-il déjà dit que vous souffriez d’un problème cardiaque et que vous ne deviez 
participer qu’aux activités physiques prescrites et approuvées par un médecin?

2. Ressentez-vous une douleur à la poitrine lorsque vous faites de l’activité physique?

3. Au cours du dernier mois, avez-vous ressenti des douleurs à la poitrine lors de périodes autres que celles où 
vous participiez à une activité physique?

4. Éprouvez-vous des problèmes d’équilibre reliés à un étourdissement ou vous arrive-t-il de perdre 
connaissance?

5. Avez-vous des problèmes osseux ou articulaires (par exemple, au dos, au genou ou à la hanche) qui 
pourraient s’aggraver par une modification de votre niveau de participation à une activité physique?

6. Des médicaments vous sont-ils actuellement prescrits pour contrôler votre tension artérielle ou un problème 
cardiaque (par exemple, des diurétiques)?

7. Connaissez-vous une autre raison pour laquelle vous ne devriez pas faire de l’activité physique?

Veuillez noter que si votre état de santé se trouve modifié de sorte que vous 
deviez répondre «OUI» à l’une ou l’autre des questions précédentes, consultez 
un professionnel de la santé ou de la condition physique, afin de déterminer  

s’il vous faut modifier votre programme d’activités.

L’exercice physique pratiqué d’une façon régulière constitue une occupation de loisir saine et agréable.  D’ailleurs, de plus en plus de gens pratiquent une activité physique de façon régulière.  
Règle générale, augmenter la pratique sportive n’entraîne pas de risques de santé majeurs.  Dans certains cas, il est cependant conseillé de passer un examen médical avant d’entreprendre 
un programme régulier d’activités physiques.  Le Q-AAP (questionnaire sur l’aptitude à l’activité physique) vise à mieux cerner les personnes pour qui un examen médical est recommandé.

Si vous prévoyez modifier vos habitudes de vie pour devenir un peu plus actif(ve), commencez par répondre aux 7 questions qui suivent.  Si vous êtes agé(e) de 15 à 69 ans, le Q-AAP vous 
indiquera si vous devez ou non consulter un médecin avant d’entreprendre votre nouveau programme d’activités.  Si vous avez plus de 69 ans et ne participez pas d’une façon régulière à 
des activités physiques exigeantes, vous devriez consulter votre médecin avant d’entreprendre ces activités.

Lisez attentivement et répondez honnêtement à chacune des questions suivantes.  Le simple bon sens sera votre meilleur guide pour répondre correctement à ces questions.  Cochez OUI 
ou NON.

Consultez votre médecin AVANT d’augmenter votre niveau de participation à une activité physique et AVANT de faire évaluer votre condition physique.  Dites à 
votre médecin que vous avez complété le questionnaire sur l’aptitude à l’activité physique et expliquez-lui précisément à quelles questions vous avez répondu 
«OUI».
�� ,O�VH�SHXW�TXH�YRXV�Q·D\H]�DXFXQH�FRQWUH�LQGLFDWLRQ�j�O·DFWLYLWp�SK\VLTXH�GDQV�OD�PHVXUH�R��YRXV�\�DOOH]�OHQWHPHQW�HW�SURJUHVVLYHPHQW���3DU�DLOOHXUV��LO�HVW�

possible que vous ne puissiez faire que certains types d’efforts adaptés à votre état de santé.  Indiquez à votre médecin le type d’activité physique que 
vous comptiez faire et suivez ses recommandations.

�� ,QIRUPH]�YRXV�TXDQW�DX[�SURJUDPPHV�G·DFWLYLWpV�VSpFLDOLVpV�OHV�PLHX[�DGDSWpV�j�YRV�EHVRLQV��RIIHUWV�GDQV�YRWUH�ORFDOLWp�

Q-AAP et VOUS

�£

Questionnaire sur l'aptitude 
à l'activité physique - Q-AAP  
(version révisée en 2002)

REMETTRE À PLUS TARD L'AUGMENTATION DE VOTRE 
PARTICIPATION ACTIVE :
�� VL�YRXV�VRXIIUH]�SUpVHQWHPHQW�GH�ILqYUH��G·XQH�JULSSH�RX�G·XQH�DXWUH�

affection passagère, attendez d’être remis(e); ou

�� VL�YRXV�rWHV�HQFHLQWH�RX�FUR\H]�O·rWUH��FRQVXOWH]�YRWUH�PpGHFLQ�DYDQW�
de modifier votre niveau de pratique sportive régulière.

Si vous  

avez  

répondu

Si, en toute honnêteté, vous avez répondu «NON» à toutes les questions du Q-AAP, vous êtes dans une 
certaine mesure, assuré(e) que:

�� YRXV�SRXYH]�DXJPHQWHU�YRWUH�SUDWLTXH�UpJXOLqUH�G·DFWLYLWpV�SK\VLTXHV�HQ�FRPPHQoDQW�OHQWHPHQW�HW�
en augmentant progressivement l’intensité des activités pratiquées.  C’est le moyen le plus simple 
et le plus sécuritaire d’y arriver.

�� YRXV�SRXYH]�IDLUH�pYDOXHU�YRWUH�FRQGLWLRQ�SK\VLTXH���&·HVW�OH�PHLOOHXU�PR\HQ�GH�FRQQDvWUH�YRWUH�
niveau de condition physique de base afin de mieux planifier votre participation à un programme 
d’activités physiques.

'DQV�OH�PHVXUH�R��OH�4�$$3�HVW�DGPLQLVWUp�DYDQW�TXH�OD�SHUVRQQH�QH�V·HQJDJH�GDQV�XQ�SURJUDPPH�G·DFWLYLWpV�RX�TX·HOOH�IDVVH�pYDOXHU�VD�FRQGLWLRQ�SK\VLTXH��OD�VHFWLRQ�VXLYDQWH�FRQVWLWXH�XQ�
document ayant une valeur légale et administrative.

«Je sous-signé(e) affirme avoir lu, compris et complété le questionnaire et avoir reçu une réponse satisfaisante à chacune de mes questions.»
NOM _________________________________________________________________________  

SIGNATURE _______________________________________________________________________________  DATE ______________________________________________________

SIGNATURE D'UN PARENT  _____________________________________________________________________  TÉMOIN ____________________________________________________
or TUTEUR (pour les mineurs)

Formule de consentement du Q-AAP:  La Société canadienne de physiologie de l’exercice, Santé Canada et ses représentants n’assument aucune responsabilité vis-à-vis des accidents qui pourraient survenir 
lors de l’activité physique.  Si, après avoir complété le questionnaire ci-dessus, un doute persiste quant à votre aptitude à faire une activité physique, consultez votre médecin avant de vous y engager.

(Un questionnaire pour les gens de 15 à 69 ans)

 OUI NON

OUI à une ou plusieurs questions

NON à toutes ces questions

N.B.– Cette autorisation de faire de l'activité physique est valide pour une période maximale de 12 mois à 
compter du moment où le questionnaire est rempli.  Elle n'est plus valide si votre état de santé change de telle 

sorte que vous répondez «OUI» à l'une des sept questions.

© Société canadienne de physiologie de l'exercice    www.csep.ca/forms

Appendix	2.	Health	Form	
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Mean	of	mean	power	across	conditions	

Figure	19.	Mean	of	mean	power	performed	across	conditions.	400,	2000,	3800	indicate	the	level	of	hypoxia	(400m,	2000m	and	3800m,	
respectively);	0%,	45%,	60%	indicate	the	level	of	BFR	(percentage	of	AOP).		##	<	0.01	###	<	0.001	for	differences	with	400m;	†	<	0.05	††	<	0.01	
†††	<	0.001	for	differences	with	0%	

Mean	number	of	sprints	until	exhaustion	or	task	failure	across	conditions	

Figure	20.	Mean	number	of	sprints	performed	until	exhaustion	or	task	failure	across	conditions.	400,	2000,	3800	indicate	the	level	of	
hypoxia	(400m,	2000m	and	3800m,	respectively);	0%,	45%,	60%	indicate	the	level	of	BFR	(percentage	of	AOP).		#	<	0.05	##	<	0.01	for	
differences	with	400m;	†	<	0.05	††	<	0.01	†††	<	0.001	for	differences	with	0%	

#	
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RPE-breathing	 400m	 2000m	 3800m	

0%	 18.3	 19.2	 18.3	

45%	 17.7	 17.1	 16.9	

60%	 15.5	 15.8	 16.1	

RPE-legs	 	 	 	

0%	 17.7	 18.5	 17.6	

45%	 19.5	 19.5	 19.2	

60%	 19.5	 19.7	 19.7	

Table	2.	Mean	values	of	the	rating	of	perceived	exertion	(RPE)	post	RSA.	Scale	is	from	6	(no	exertion)	to	20	
(maximal	exertion).	From	Borg,	1982.	

	

	

	

	 	

Figure	21.	Mean	(±SD)	blood	lactate	concentration	post	RSA	across	condition.	400m,	2000m,	3800m	indicate	the	three	levels	of	hypoxia;	full	
lines	represent	conditions	at	0%BFR;	dashed	lines	represent	conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR;	*	<	0.05	
with	0%BFR.	

Mean	blood	lactate	post	RSA	and	across	conditions	

*	
*	
*	

*	*	

*	
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Figure	22.	Mean	maximal	heart	rate	(in	beat	per	minute)	during	RSA	across	conditions.	400m,	2000m,	3800m	indicate	the	three	levels	of	
hypoxia;	full	lines	represent	conditions	at	0%BFR;	dashed	lines	represent	conditions	at	45%BFR,	dotted	lines	represent	conditions	at	60%BFR.			


