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A B S T R A C T

Multiple-point statistical (MPS) simulation methods have gained widespread adoption across various Earth
science disciplines. They offer a versatile framework for simulating intricate spatial patterns and heterogeneity
in both surface and subsurface structures. While these simulations adeptly incorporate conditioning to hard
data, such as information from boreholes, conditioning to indirect data (e.g. geophysical data) is more
challenging. A new methodology is introduced that provides geostatistical realisations honouring indirect
geophysical data and complex prior knowledge described by a training image. An MPS simulation is iteratively
built up pixel-by-pixel starting from an empty grid or with initial hard conditioning data if available. During
each simulation step, a pixel value is selected from a set of candidates proposed by the MPS algorithm. This
selection is made proportionally to an approximated likelihood that accounts for indirect geophysical data. The
expected values and uncertainty quantification are obtained by simulating many complete field realisations.
Our approach, which we name Indirect Data Conditional Simulations (IDCS), is tested for multi-Gaussian and
complex subsurface structures with synthetic data from linear and non-linear crosshole ground-penetrating
radar responses. The IDCS method is inherently approximate due to the finiteness of the training image, a
limited number of MPS candidates at each simulation step and the need to approximate intractable likelihood
functions. Nevertheless, the results demonstrate that the posterior approximations obtained by IDCS are often
comparable to those obtained with a Markov chain Monte Carlo method, with IDCS being at least one order
of magnitude faster. While the method performs the best when the underlying physics is modelled as a linear
response, encouraging preliminary results considering non-linear physical responses are provided.
1. Introduction

Multiple-point statistics (MPS) is a non-parametric family of meth-
ods used to produce geostatistical realisations honouring higher-order
spatial statistics present in so-called training images (TI; Guardiano and
Srivastava, 1993; Strebelle, 2002; Zhang, 2006; Mariethoz and Caers,
2014). These methods proceed in a sequential manner by assigning
parameter values to points on a simulation grid. This process entails
scanning the training image and contrasting the patterns within it with
the patterns surrounding the simulated point on the simulation grid,
using various distance metrics. They are widely used for applications
in geology and hydrogeology (Høyer et al., 2017; Le Coz et al., 2017;
Barfod et al., 2018), remote sensing (Zakeri and Mariethoz, 2021
and references therein) and reservoir engineering (Zhang et al., 2006;
Melnikova et al., 2015) to obtain ensembles of model realisations with
the spatial statistics of the TI while also honouring available hard
data (e.g. borehole information) or volume (linear averages, Straubhaar
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et al., 2016) measurements. Even if deep generative models offer highly
competitive approaches to generate unconditional realisations (Laloy
et al., 2017, 2018), MPS algorithms are still far superior in conditioning
to hard data (Zhang, 2015; Hansen et al., 2018; Straubhaar and Renard,
2021).

Sequential geostatistical simulations, including MPS, are commonly
constrained to hard data such as well measurements. Multiple-point
statistics methods can additionally be utilised as a post-processing
tool to refine a deterministic, smoothness-constrained solution obtained
from a non-linear inversion. In such a setting, the resolution of the
model realisations is enhanced (Lochbühler et al., 2014; Linde et al.,
2015), but without any guarantees that the resulting realisations hon-
our the original geophysical data. Other algorithms such as the Blocking
Moving Window (BMW) method, introduced by Alcolea and Renard
(2010), constrains MPS simulations to both hard data and connec-
tivity information and while it introduces correlation with soft data
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(e.g. geophysical models) through a secondary training image, it does
not impose it as a constraint.

Geophysical inversion using MPS algorithms generally relies on
Markov chain Monte Carlo (MCMC) methods (Mariethoz et al., 2010a;
Hansen et al., 2012). At each model proposal step, an MPS algorithm
performs sequential Gibbs sampling in which a subset of randomly
chosen model cells (Mariethoz et al., 2010a) or a randomly selected
patch (Hansen et al., 2012) within the model domain are re-simulated.
The model proposals generated by the MPS algorithm are consistent
with the patterns of the training image and conditional on the cell
values that have not been re-simulated. The acceptance probability
is given by the ratio of the likelihoods of the proposed model state
and the previous model state in the chain. This extended Metropolis
method (Mosegaard and Tarantola, 1995) will eventually locate the
posterior probability density function (PDF) and sample proportionally
to it. However, it is often very slow in practice, as geostatistical re-
simulation and forward simulation times are non-negligible, and there
is often a need to perform millions of MCMC iterations before the
posterior PDF is sufficiently sampled. The latter is a result of very
high correlation in the sampled MCMC states, implying that very
long runs are needed to draw a sufficient number of independent
samples (Ruggeri et al., 2015).

In the context of linear forward problems, Hansen et al. (2006) in-
troduced a method for conditioning sequential simulations to noisy in-
direct data of mixed support (point- and volume-support). This method
allows for the incorporation of geophysical measurements into the
simulation process. In their implementation, the mean and covariance
of the posterior PDF is obtained by solving a kriging system with an
a priori mean and covariance as well as support volumes related to
the physical response. In a subsequent step, posterior realisations are
generated through sequential simulation using the kriging mean and
covariance. This method was later extended by Hansen and Mosegaard
(2008) to accommodate non-Gaussian marginal prior distributions,
however, it captures only two-point spatial statistics, and its ability
to accurately reproduce the prior is restricted by the kriging process.
Applying the concept of averages over support volumes to MPS, Straub-
haar et al. (2016) showed how simulations can be constrained to
indirect geophysical data and the multiple-point statistics of a condi-
tional prior. In their method, MPS candidate values for a simulated
location are accepted according to an accumulated error considering
the target value (mean value obtained from the data), a tolerance range
and the mean over the support volume in the simulation grid. This
method, however, does not sample the posterior PDF, as it does not
account for the error statistics and is based on subjective tolerance
values.

In this paper, a methodology is proposed enabling geostatistical
simulations honouring geophysical constraints under a linear system
response and its extension to non-linear responses is explored. This
approach can, for instance, be applied to potential-field methods such
as gravity, magnetics and self-potential when prior knowledge is best
represented by higher-order statistics (e.g. Jensen et al., 2022). Our
approach involves gradually constructing an MPS realisation starting
from an empty simulation grid or, if hard data is available, with the
known local data values. Each simulated value is selected based on geo-
statistical constraints considering spatial patterns formed by the already
informed values, as well as constraints offered by the geophysical data.
Incorporating the latter constraint would normally involve calculating
a likelihood by marginalising over the distributions of the uninformed
model parameters (grid cells), something that is computationally im-
practical. Instead, at each simulation step, 𝑘 conditional samples are
drawn using the MPS algorithm and one is accepted with a probability
that is proportional to an approximate likelihood. In the likelihood
approximation, the uninformed model parameter values (mean and
covariance) are estimated using kriging. Once the simulation grid is
2

fully informed, it can be seen as a draw from an approximate posterior a
distribution. Conducting multiple independent simulations results in an
ensemble approximating the posterior distribution.

The proposed approach is faster than sequential Gibbs sampling
within MCMC, as simulations are built up conditionally to the data, at
each simulation step, and no re-simulation steps are performed. More-
over, the approach can be easily parallelised since each full simulation
can be performed independently of other simulations. Nonetheless, the
method is approximate due to three factors: (1) the training image
is finite, (2) the likelihood function is approximated in each simu-
lation step using a limited number of MPS proposals and (3) the
uninformed model parameters are assumed to be normally-distributed
when approximating the likelihood. To assess the impacts of these
approximations on the simulation results, we first consider a training
image depicting a multi-Gaussian field for which the posterior is known
analytically. We then consider more complex continuous and binary
channelised training images for which comparisons are made, in terms
of computational effort and accuracy, with respect to a sequential
Gibbs sampler. Finally, we introduce an extension of our approach to
non-linear physical responses and show preliminary results.

The paper is organised as follows: Section 2 provides a detailed ex-
planation of the underlying theory; Section 3 details the metrics and the
comparative approach used to assess the quality of the results; Section 4
presents the results obtained when considering a linear physical solver
as well as initial results for a non-linear solver; Section 5 discusses
the results, highlighting the limitations, advantages and possible future
developments. Finally, Section 6 provides conclusions.

2. Methods

The proposed methodology allows conditioning MPS simulations
to both point data (e.g., facies) and indirect data (geophysical mea-
surements). Our implementation relies on QuickSampling (Gravey and
Mariethoz, 2020) as the MPS algorithm, and the indirect geophysical
data in the chosen examples are given by synthetic crosshole ground-
penetrating radar (GPR) simulations. In the following subsections, a
detailed description of the method (Section 2.1) is provided, focus-
ing on the approximation of the likelihood and how to perform a
fast update of the kriging mean and covariance. This description is
then followed by a concise summary of the QuickSampling algorithm
(Section 2.2) and the considered forward operators (Section 2.3).

2.1. Bayesian formulation for conditional sequential simulation

Consider a discretised random field parameterised using a grid with
𝑀 cells 𝜽 = (𝜃1, 𝜃2,… , 𝜃𝑀 ). The true field is considered as a realisation
𝝑 of the random field. The aim is to simulate realisations of 𝜽 that are
conditioned to indirect geophysical data 𝐝. To achieve this, a simula-
tion grid 𝑆(𝑥) is used with nodes (𝑥1,… , 𝑥𝑀 ) defining the locations
corresponding to the 𝑀 grid cells in the discretised random field 𝜽.
The method begins with an empty simulation grid 𝑆(𝑥) and during
he simulation, the cells are populated one by one with values. If any
hard) conditioning points 𝜽𝑖 = 𝜗𝑖 are known, they are assigned to the
imulation grid in 𝑆(𝑥𝑖) before the simulation begins. If the hard data
s available at a finer scale than the resolution of the simulation grid,
hen it is necessary to apply upscaling techniques (Zhang, 2015). The
imulation path 𝐩 (order of simulated locations) is generated randomly
o maximise the variability of the realisations.

At each simulation step, there are three types of grid cells: informed
ells 𝒙𝐼 , corresponding to locations that were populated in previous
teps with the values 𝑆(𝒙𝐼 ) = 𝜗𝐼 (or are related to hard data); a
imulated cell 𝑥𝑆 , corresponding to the cell that is simulated in the
urrent step of the algorithm; uninformed cells 𝒙𝑈 , corresponding to the
mpty grid cells that have not yet been simulated. To select the value
or the simulated cell 𝑥𝑆 , we rely on the distribution of the underlying
andom field 𝜽, introducing 𝜃𝑆 , 𝜽𝐼 and 𝜽𝑈 as the random variables

ssociated with the cells at locations 𝑥𝑆 , 𝒙𝐼 and 𝒙𝑈 . In each simulation
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Fig. 1. Schematic illustration of one IDCS simulation step for a binary model. (a) The simulation grid with the simulated location marked by a red square, informed locations
marked as either white or black filled squares and uninformed locations marked in blue. (b) The MPS algorithm proposes 𝑘 = 2 candidates sampled from the training image that are
conditional on the pattern in the simulation grid. (c) Kriging is used to estimate uninformed grid cells that are conditioned on informed and simulated (MPS candidates) locations.
Kriging provides 𝑘 kriging means and a single kriging covariance 𝜮̃𝜃 , which are then used to calculate an approximate likelihood using Eqs. (9)–(11) given the geophysical data.
(d) One MPS candidate is drawn proportionally to the approximate likelihood and assigned to the simulated location.
step, one of 𝑘 candidate values 𝑀𝑃𝑆 = {𝜗1𝑆 ,… , 𝜗𝑘𝑆} proposed for
the simulated cell 𝑥𝑆 is chosen proportionally to the unnormalised
posterior distribution of 𝜃𝑆 that is conditional on observed data 𝐝 and
the values of the previously informed cells,

𝑝(𝜗𝑆 |𝐝,𝜽𝐼 = 𝜗𝐼 ) ∝ 𝑝(𝐝|𝜃𝑆 = 𝜗𝑆 ,𝜽𝐼 = 𝝑𝐼 )𝑝(𝜗𝑆 |𝜽𝐼 = 𝝑𝐼 ). (1)

As the conditional prior 𝑝(𝜗𝑆 |𝜽𝐼 = 𝝑𝐼 ) cannot be computed explicitly,
an MPS algorithm is relied upon to sample from it. In general, MPS
algorithms generate samples from a conditional distribution that pre-
serves higher-order statistics. These algorithms scan the training image
and compare its patterns to that of a defined neighbourhood around
the simulated location 𝑥𝑆 in the simulation grid 𝑆(𝑥). However, the
proposed methodology is not confined to MPS and it is adaptable to any
algorithm capable of generating multiple samples from a conditional
prior.

The likelihood in Eq. (1), which is a marginalised likelihood over
all uninformed parameters 𝜽𝑈 :

𝑝(𝐝|𝜃𝑆 = 𝜗𝑆 ,𝜽𝐼 = 𝝑𝐼 )

= ∫ 𝑝(𝐝|𝜃𝑆 = 𝜗𝑆 ,𝜽𝐼 = 𝝑𝐼 ,𝜽𝑈 = 𝝑𝑈 )𝑝(𝝑𝑈 |𝜃𝑆 = 𝜗𝑆 ,𝜽𝐼 = 𝝑𝐼 )𝑑𝝑𝑈 , (2)

is intractable as the forward response depends on the whole property
field, but the response contribution from the uninformed parameters
𝜽𝑈 is unknown. To circumvent this problem, an approximation of
the likelihood is derived below by estimating the distribution of the
uninformed 𝜽𝑈 parameters conditional on informed 𝜽𝐼 = 𝝑𝐼 and
simulated 𝜃𝑆 = 𝜗𝑆 parameters.

2.1.1. Likelihood approximation
The distribution of the uninformed parameters 𝜽𝑈 needed for the

likelihood approximation is approximated by kriging-based interpola-
tion (Matheron, 1963). Kriging assumes a mean 𝑚𝜃(𝑥) and a stationary
covariance 𝝈𝜃(𝑥𝑖, 𝑥𝑗 ) function describing the correlation between loca-
tions 𝑥𝑖 and 𝑥𝑗 that are separated by some distance and angle. To build
the covariance model, kriging relies on theoretical variograms (Oliver
and Webster, 1990). Here simple kriging is used, in which the mean
3

of the property of interest is assumed to be known and the values of
uninformed locations are estimated based on conditioning to informed
and simulated (MPS candidates) locations (Chilès and Desassis, 2018).

To estimate the distribution of 𝜽𝑈 , both the property field 𝜽 and
the observational noise are assumed to follow a normal distribution.
Note that the Gaussian assumption on the property field is only made to
approximate the likelihood (Eq. (2)), while the candidates are provided
by draws from MPS-based priors. Given a multi-Gaussian field with the
following prior and likelihood distributions

𝜽 ∼  (𝝁𝜃 ,𝜮𝜃) (3)

𝐝|(𝜽 = 𝝑) ∼  (𝐆𝝑,𝜮𝑑 ), (4)

there exists an analytical solution both for the likelihood 𝑝(𝐝|𝜽 = 𝝑) and
posterior 𝑝(𝝑|𝐝) PDF (see Appendix A). In Eq. (3), 𝝁𝜃 = (𝑚𝜃(𝑥𝑖))1≤𝑖≤𝑀
and 𝜮𝜃 = (𝝈𝜃(𝑥𝑖, 𝑥𝑗 ))1≤𝑖,𝑗≤𝑀 represent the mean vector and covariance
matrix of the grid cells. In Eq. (4) it is assumed that the forward
response can be simplified such that a general forward operator 𝑔(⋅) can
be replaced by 𝐆, the linear forward operator of the physical response,
wherein the term 𝐆𝝑 corresponds to the expected value of the data. 𝜮𝑑
in Eq. (4) is the covariance matrix of the data errors. The 𝜽𝑐 = (𝜃𝑆 ,𝜽𝐼 )
is introduced for locations 𝒙𝑐 = (𝑥𝑆 ,𝒙𝐼 ) and the distribution of the
random field is re-written as
(

𝜽𝑐
𝜽

)

∼ 

((

𝝁𝜃𝑐

𝝁𝜃

)

,

(

𝜮𝜃𝑐 𝜮𝜃𝑐𝜃

𝜮𝜃𝜃𝑐 𝜮𝜃

))

, (5)

where 𝝁𝜃𝑐 and 𝝁𝜃 are the mean vectors for the respective positions,
𝜮𝜃𝑐 and 𝜮𝜃 are the covariance matrices whose (𝑖, 𝑗) entries are the
covariances between the 𝑖th and 𝑗th positions in 𝜽𝑐 or 𝜽, respectively,
and 𝜮𝜃𝑐𝜃 refers to the covariance matrix consisting of the covariance
values between 𝜽𝑐 and 𝜽. The conditional distribution 𝜽|(𝜽𝑐 = 𝝑𝑐 ) ∼
 (𝝁̃𝜃 , 𝜮̃𝜃) can then be calculated as follows (Prince, 2012):

𝝁̃𝜃 =𝝁𝜃 +𝜮𝜃𝜃𝑐𝜮
−1
𝜃𝑐
(𝝑𝑐 − 𝝁𝜃𝑐 ), (6)

𝜮̃𝜃 =𝜮𝜃 −𝜮𝜃𝜃𝑐𝜮
−1
𝜃𝑐
𝜮𝜃𝑐𝜃 . (7)
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For informed and simulated parameters 𝜃𝑐 , the entries in the kriging
mean 𝝁̃𝜃 retain the same values as prior to kriging and their corre-
sponding entries in the kriging covariance matrix 𝜮̃𝜃 are zero. The
multiplication 𝜮𝜃𝜃𝑐𝜮

−1
𝜃𝑐

yields the kriging weights that provide the
necessary information for interpolating from known grid points (at
locations 𝒙𝐼 and 𝑥𝑆 ) to unknown points (at location 𝒙𝑈 ).

At each simulation step, 𝑘 candidate values 𝑀𝑃𝑆 are considered
nd 𝑘 kriging means and a single covariance matrix (see Fig. 1 for illus-
ration) are obtained. The likelihood of each candidate value 𝑝(𝐝|𝜽𝑐 =
𝑐 ) is estimated as a Gaussian PDF with mean 𝝁̃𝐿 and covariance matrix
̃ 𝐿 (Bishop and Nasrabadi, 2006):

|(𝜽𝑐 = 𝝑𝑐 ) ∼ (𝝁̃𝑳, 𝜮̃𝑳), (8)

𝝁̃𝐿 =𝐆𝝁̃𝜃 , (9)

𝜮̃𝐿 =𝜮𝑑 +𝐆𝜮̃𝜃𝐆𝑇 . (10)

or each candidate value and corresponding kriging mean, the forward
esponse is calculated to generate 𝝁̃𝐿 (Eq. (9)). Additionally, the kriging
rror is incorporated into the error covariance of the likelihood 𝜮̃𝐿
Eq. (10)). Finally, the likelihood can be approximated as:

(𝐝|𝜃𝑐 = 𝜗𝑐 ) = 𝑝(𝐝|𝜃𝑆 = 𝜗𝑆 ,𝜽𝐼 = 𝝑𝐼 )

≈ 1
√

(2𝜋)𝑁𝑑
|𝜮̃𝐿|

exp
(

−1
2
[

𝐝 − 𝝁̃𝐿
]𝑇 𝜮̃−1

𝐿
[

𝐝 − 𝝁̃𝐿
]

)

, (11)

here 𝑁𝑑 is the number of observed indirect data and |𝜮̃𝐿| is the
eterminant of 𝜮̃𝐿. The value assigned to the simulated location is
rawn proportionally to the approximate likelihoods of the 𝑘 proposed
alues. This is achieved by drawing randomly from the cumulative
istribution function (CDF) of the approximate likelihoods.

To estimate the covariance structure of the Gaussian prior distri-
ution in Eq. (5), the GSTools Python library (Müller et al., 2022) is
mployed to automatically fit a theoretical variogram using samples
rom the training image. Based on these samples, which in this study
re limited to 30 000, GSTools provides the standard deviation, integral
cale in two directions and the shape parameter of the fitted model. In
his paper, the term ‘‘training image’’ refers to either a complete image
r a portion of an image used in the simulation process.

.1.2. Fast update of the conditional mean and covariance
To gain computational efficiency by avoiding re-computing

qs. (6)–(7) at each simulation step, the fast kriging update approach
s adopted. This approach was introduced by Emery (2009) and later
xtended by Chevalier et al. (2014, 2015). Chevalier et al. (2015)
sed it to assimilate new observation points to sequential simulations.
heir technique enables a fast update of the kriging mean 𝝁̃𝜃 and the
riging covariance 𝜮̃𝜃 given new conditioning data points. Instead of
alculating the conditional mean and covariance from scratch at each
imulation step, the previous estimate is perturbed given the newly
imulated value. To maintain consistency, the general notation used in
he previous subsection is adopted and the kriging update equations
re expressed as a function of the simulation step, denoted as 𝑡. In
his notation, 𝜽 becomes 𝜽(𝑡) and 𝜽(𝑡)𝑐 = (𝜽(𝑡)𝐼 , 𝜃(𝑡)𝑆 ). The conditional

distribution then becomes 𝜽(𝑡)|(𝜽(𝑡)𝑐 = 𝝑(𝑡)
𝑐 ) ∼  (𝝁̃(𝑡)

𝜃 , 𝜮̃(𝑡)
𝜃 ).

Expressing 𝝁𝜃 = (𝑚𝜃(𝑥𝑖))1≤𝑖≤𝑀 and 𝝁̃𝜃 = (𝑚̃𝜃(𝑥𝑖))1≤𝑖≤𝑀 , 𝜮𝜃 =
(𝝈𝜃(𝑥𝑖, 𝑥𝑗 ))1≤𝑖,𝑗≤𝑀 and 𝜮̃𝜃 = (𝝈̃𝜃(𝑥𝑖, 𝑥𝑗 ))1≤𝑖,𝑗≤𝑀 and re-writing Eqs. (6)–
(7) with respect to step 𝑡 and the location 𝑥 lead to,

𝑚̃(𝑡)
𝜃 (𝑥) = 𝑚𝜃(𝑥) + 𝝈𝜃(𝒙(𝑡)𝑐 , 𝑥)𝑇 𝝈𝜃(𝒙(𝑡)𝑐 ,𝒙(𝑡)𝑐 )−1(𝝑(𝑡)

𝑐 − 𝑚𝜃(𝒙(𝑡)𝑐 )), (12)

𝝈̃(𝑡)
𝜃 (𝑥𝑖, 𝑥𝑗 ) = 𝝈𝜃(𝑥𝑖, 𝑥𝑗 ) − 𝝈𝜃(𝒙(𝑡)𝑐 , 𝑥𝑖)𝑇 𝝈𝜃(𝒙(𝑡)𝑐 ,𝒙(𝑡)𝑐 )−1𝝈𝜃(𝒙(𝑡)𝑐 , 𝑥𝑗 ). (13)

Using the fast update, 𝑚̃(𝑡)
𝜃 (𝒙) is computed by perturbing the kriging

mean resulting from the previous step 𝑚̃(𝑡−1)
𝜃 (𝑥), according to the dif-

(𝑡)
4

ference between the value of the MPS candidate 𝜗𝑆 and the value at
location 𝑥𝑆 in 𝑚̃(𝑡−1)
𝜃 :

𝑚̃(𝑡)
𝜃 (𝑥) = 𝑚̃(𝑡−1)

𝜃 (𝑥) + 𝝈̃(𝑡−1)
𝜃 (𝑥(𝑡)𝑆 , 𝑥)𝑇 (𝝈̃(𝑡−1)

𝜃 (𝑥(𝑡)𝑆 , 𝑥(𝑡)𝑆 ))−1(𝜗(𝑡)𝑆 − 𝑚̃(𝑡−1)
𝜃 (𝑥(𝑡)𝑆 )), (14)

where 𝝈̃(𝑡−1)
𝜃 (𝑥(𝑡)𝑆 , 𝑥)𝑇 (𝝈̃(𝑡−1)

𝜃 (𝑥(𝑡)𝑆 , 𝑥(𝑡)𝑆 ))−1 represents the kriging weight.
The update to the conditional covariance is based on the same kriging
weight

𝝈̃(𝑡)
𝜃 (𝑥𝑖, 𝑥𝑗 ) = 𝝈̃(𝑡−1)

𝜃 (𝑥𝑖, 𝑥𝑗 )− 𝝈̃(𝑡−1)
𝜃 (𝑥(𝑡)𝑆 , 𝑥𝑖)𝑇 (𝝈̃

(𝑡−1)
𝜃 (𝑥(𝑡)𝑆 , 𝑥(𝑡)𝑆 ))−1𝝈̃(𝑡−1)

𝜃 (𝑥(𝑡)𝑆 , 𝑥𝑗 ).

(15)

Once the conditional mean and covariance are updated, they are
plugged into Eqs. (9) and (10). For a summary of our full conditioning
algorithm, see Algorithm 1. The algorithm describes a single run of
the methodology which is referred to as Indirect Data Conditional
Simulations (IDCS) for the rest of the paper.

Algorithm 1: Indirect Data Conditional Simulations (IDCS) with
a general MPS algorithm
1 Input: simulation grid 𝑆(𝑥) with 𝑀 grid cells (either empty or

informed by hard conditioning data), training image 𝑇 ,
simulation path 𝐩, observed data 𝐝, number of candidates 𝑘
and algorithm-specific MPS parameters 𝐛.

2 Output: fully informed grid with property field 𝝑
3 set simulation step 𝑡 = 1
4 for 𝑡 <=𝑀 do
5 𝑥𝑆 = 𝑝𝑡
6 Function MPS(S(x), 𝑇 , 𝑥𝑆 , 𝑘, 𝐛)
7 Sample candidate values from 𝑇 that are conditional on

the 𝝑𝐼 around location 𝑥𝑆 in the simulation grid.
8 return 𝑀𝑃𝑆
9 if t=1 then
10 Compute 𝝁̃(𝑡)

𝜃 and 𝜮̃(𝑡)
𝜃 using Eqs. (5)-(7) for all 𝑘

candidates
11 else
12 Update 𝝁̃(𝑡)

𝜃 and 𝜮̃(𝑡)
𝜃 using Eqs. (14)-(15) for all 𝑘

candidates
13 end
14 𝝁̃𝐿, 𝜮̃𝐿 ← compute Eqs. (9)-(10) for all 𝑘 candidates
15 Approximate 𝑝(𝐝|𝜽𝒄 = 𝝑𝒄 ) ← compute Eq. (11) for all 𝑘

candidates
16 Calculate cumulative distribution function (CDF) of 𝑘

likelihoods and draw one value from 𝑀𝑃𝑆
17 Populate 𝑆(𝑥𝑆 ) with the selected candidate value 𝝑𝑆
18 𝑡 = 𝑡 + 1
19 end

2.2. QuickSampling algorithm

QuickSampling (QS) is used to demonstrate the proposed IDCS
methodology. It is a computationally efficient pixel-based algorithm
that in contrast to many other pixel-based MPS algorithms, does not
store conditional distributions (Strebelle, 2002; Straubhaar et al., 2011)
or rely on threshold criteria for choosing a candidate (Mariethoz et al.,
2010b). In this algorithm, the training image, denoted as 𝑇 , is scanned
to find a close match to the pattern around the simulated location
𝑥𝑆 in the simulation grid 𝑆(𝑥). The pattern is represented by values
and their relative positions with respect to 𝑥𝑆 . At each simulation step
a neighbourhood in 𝑆, denoted as 𝑁 , is considered; 𝑁(𝑥) is centred
around the currently simulated grid cell and contains within a specified
radius the locations in the simulation grid that are previously informed

(either previously simulated or conditioning data points).
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In QS, the cross-correlation between 𝑁(𝑥) and 𝑇 is calculated to
generate a dissimilarity (mismatch) map 𝐸:

𝐸(𝑇 ,𝑁(𝑥)) ∝ −1

{

∑

𝑖∈𝐼

∑

𝑗∈𝐽
{1(𝑇𝑖)◦𝑓𝑗 (𝑇𝑖)}◦{𝑤𝑖◦1(𝑥𝑖)◦ℎ𝑗 (𝑁(𝑥)𝑖)}

}

,

(16)

where  and −1 are the fast Fourier transform and its inverse, {}
s the conjugate and ◦ indicates an element-wise multiplication. Fur-
hermore, 𝑤 is a weighting matrix and it can be set to assign different
eights as a function of the distance from 𝑥𝑆 . The indicator function 1

equals 1 at informed grid cells and 0 everywhere else, that is,

(𝑥) =

{

1, if 𝑁(𝑥) is informed
0, otherwise .

(17)

he variables 𝑓𝑗 and ℎ𝑗 represent components of a series of decomposed
unctions that depend on the distance metric used (see Gravey and Ma-
iethoz (2020) for more information). In the original implementation,
andidates are sorted in increasing order of mismatch and the simulated
alue is sampled proportionally to a probability determined by a user-
efined rank 𝑘𝑟𝑎𝑛𝑘. In addition to 𝑘𝑟𝑎𝑛𝑘, the QS algorithm requires a
ser-defined parameter 𝑛 that determines the number of neighbouring
ocations around 𝑥𝑆 , and effectively the size of the neighbourhood 𝑁(𝑥)
o be considered for MPS conditioning. In our implementation, the QS
lgorithm functions solely as a means to sample 𝑘 conditional draws
rom the prior that are evaluated using the approximate likelihood.
herefore, the QS parameter 𝑘𝑟𝑎𝑛𝑘 is replaced in IDCS by 𝑘𝑐𝑎𝑛𝑑 which

represents the number of candidates provided by the QS algorithm
(𝑘 = 𝑘𝑐𝑎𝑛𝑑).

2.3. Forward response

To test the IDCS, a crosshole geometry is considered in which
GPR antennas placed in two boreholes are used to emit and receive
electromagnetic signals and the first-arrival travel-times between dif-
ferent source and receiver pairs are measured. In this setting, 𝜽 is a
random slowness field (inverse of the velocity). Specifically, a ray-based
formulation is used in which the travel-time 𝑡𝑟𝑎𝑦 is an integration of
slowness over the ray path 𝑙:

𝑡𝑟𝑎𝑦 = ∫ 𝜗(𝑙)𝑑𝑙. (18)

The aforementioned physical response can be written in a general form
as

𝐝 = 𝑔(𝝑) + 𝜺, (19)

where 𝑔(⋅) is the forward operator projecting the parameters 𝝑 in the
model space into a vector 𝐝 in the data space and the process typi-
cally involves some type of error 𝜺. Here only uncorrelated, randomly
distributed Gaussian (measurement) noise under 𝜺 is considered.

2.3.1. Linear physical response
Considering linear physics, Eq. (18) can be simplified into 𝑡𝑟𝑎𝑦 ≈

∑

𝑖 𝑙𝑖 ⋅ 𝜗𝑖 and the response becomes a matrix–vector multiplication
operation

𝒅𝑠𝑖𝑚 = 𝑮𝝑, (20)

where 𝐆 (also referred to as the sensitivity matrix) contains the ray
length in each grid cell considering only a straight path between the
source and receiver. The simulated data 𝐝𝑠𝑖𝑚 are represented in a vector
containing each source–receiver response in the form of first-arrival
travel-times.

2.3.2. Non-linear physical response
When dealing with a non-linear physical response, an approxima-
5

tion to Eq. (19) is required in order to calculate Eqs. (9)–(10). This
is achieved by linearising the forward operator 𝑔(𝝑) around a given
subsurface model to obtain the sensitivity matrix (Jacobian). In general,
the Jacobian represents the gradient around the point of linearisation
and, therefore, the forward response is calculated with respect to a
reference point 𝝑0:

𝒅𝑠𝑖𝑚 = 𝑔(𝝑0) + 𝑱 (𝝑0)(𝝑 − 𝝑0), (21)

where 𝑱 (𝝑0) is the Jacobian calculated for the subsurface model 𝝑0.
In travel-time tomography, the elements in a row of the Jacobian
represent the length of the ray segment in each grid cell of the model
for a specific ray path. Therefore, the forward operator can be replaced
by the Jacobian to calculate the physical response 𝒅𝑠𝑖𝑚 = 𝑱𝝑, where 𝑱
is the Jacobian given the slowness field 𝝑. In this case, 𝐆 in Eqs. (9)
and (10) is simply replaced with 𝑱 to obtain:

𝝁̃𝐿 = 𝑱𝝁̃𝜃 (22)

𝜮̃𝐿 = 𝜮𝑑 + 𝐉𝜮̃𝜃𝐉𝑇 . (23)

3. Comparative approach and quality assessment criteria

3.1. Sequential Gibbs sampling

To assess the quality and performance of the IDCS method when no
analytical solution is available, it is compared against results obtained
with the extended Metropolis algorithm (Mosegaard and Tarantola,
1995) using a sequential Gibbs sampler (Hansen et al., 2012; Cordua
et al., 2012).

The extended Metropolis algorithm allows exploring the posterior
PDF when dealing with a prior distribution of arbitrary complexity from
which only samples can be drawn. In this algorithm, the acceptance or
rejection of a model proposal 𝝑′ is determined by the acceptance prob-
ability 𝑃𝑎𝑐𝑐𝑒𝑝𝑡 = min

(

1, 𝑝(𝐝|𝜽′=𝝑′)
𝑝(𝐝|𝜽(𝑡)=𝝑(𝑡))

)

, where 𝝑(𝑡) represents the current
model. If accepted 𝜽(𝑡+1) = 𝝑′, else 𝜽(𝑡+1) = 𝝑(𝑡). Gibbs sampling takes
a given realisation 𝝑 and at each iteration computes the conditional
distribution at a random position 𝑖

𝑝(𝜃𝑖|𝜃1 = 𝜗1,… , 𝜃𝑖−1 = 𝜗𝑖−1, 𝜃𝑖+1 = 𝜗𝑖+1,… , 𝜃𝑀 = 𝜗𝑀 ). (24)

A value for 𝜃𝑖 is then drawn from the conditional distribution form-
ing the new realisation. Sequential Gibbs sampling combines sequen-
tial simulations with the Gibbs sampler such that one can generate
realisations from the conditional distribution.

In this study, the extended Metropolis algorithm is used to estimate
the posterior PDF and compare it to the approximate posterior com-
puted based on realisations obtained from running the IDCS. The QS
algorithm is used to initialise the MCMC chains with unconditional MPS
realisations and to generate conditional model proposals in subsequent
MCMC steps. At each MCMC step, a random subset of the model domain
is re-simulated while being conditioned on the remaining part of the
domain. The size of the subset is adapted during the first 2000 MCMC
steps, within the so-called ‘‘burn-in’’ period (a period characterised by
low likelihoods and dependence on the initial model state), using the
parameter 𝛿. After burn-in, the value of 𝛿 remains constant to maintain
detailed balance of the Markov chain. The parameter 𝛿 represents half
of the side-lengths of a square centred at a grid point chosen at random.
The size of 𝛿 is used to control the step length of the sequential Gibbs
sampler, where a small value leads to a high acceptance rate with
highly correlated chains and larger values lead to lower acceptance
rates but less correlated chains (Hansen et al., 2012). During burn-in,
the value of 𝛿 is adjusted every 20 iterations according to

𝛿𝑛𝑒𝑤 = 𝛿 ∗
𝑃𝑎𝑐𝑐
𝑃𝑡𝑎𝑟𝑔𝑒𝑡

, (25)

with the aim of maintaining a reasonable acceptance rate (Gelman
et al., 1996; Cordua et al., 2012). The variable 𝑃𝑎𝑐𝑐 is the average accep-
tance rate between adjustment steps and 𝑃 is the target acceptance
𝑡𝑎𝑟𝑔𝑒𝑡
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rate, which is set to 0.3. The Gelman–Rubin diagnostic (Gelman and
Rubin, 1992), denoted as 𝑅̂, is used. This metric compares the variance
etween the independent chains and within the chains, to assess the
onvergence of the MCMC chains to a stationary distribution for each
f the model parameters. Convergence is declared when 𝑅̂ ≤ 1.2 for all
onsidered parameters (grid cell values).

.2. Performance metrics

To determine the optimal algorithmic settings and to assess the
uality of the resulting posterior realisations, the structural similarity
ndex (SSIM; Wang et al., 2004) with respect to the reference subsur-
ace model, and the weighted root-mean-squared error (WRMSE) with
espect to the synthetic data are calculated. The SSIM metric indicates
he structural similarity between two images. It is defined as:

𝑆𝐼𝑀(𝐮, 𝐯) =
(2𝜇𝐮𝜇𝐯 + 𝐶1)(2𝜎𝐮𝐯 + 𝐶2)

(2𝜇2
𝐮 + 𝜇2

𝐯 + 𝐶1)(2𝜎2𝐮 + 𝜎2𝐯 + 𝐶2)
, (26)

where 𝐮 and 𝐯 are 𝑊 × 𝑊 sliding windows of their respective [0, 1]
normalised image, 𝜇𝐮 and 𝜇𝐯 are the mean values over 𝐮 and 𝐯, 𝜎2𝐮 and
𝜎2𝐯 are the respective variances of 𝐮 and 𝐯, 𝜎𝐮𝐯 is the covariance between
𝐮 and 𝐯 and 𝐶1 and 𝐶2 are constants. The size of the sliding window is
set to 7 × 7 and 𝐶1 and 𝐶2 are set to 0.01 and 0.03, respectively. The
SSIM metric ranges from −1 to 1, where 1 indicates perfectly matching
images. It is reported as a mean value across all posterior realisations.
The data fit is evaluated with respect to the standard deviation of the
observational noise 𝜎𝑑 using the WRMSE

𝑊𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑁𝑑

𝑁𝑑
∑

𝑖=1

[

𝑑𝑖 − 𝑑𝑠𝑖𝑚𝑖
𝜎𝑑,𝑖

]2

, (27)

etween the observed data 𝐝 associated with the reference model
nd the simulated data 𝐝𝑠𝑖𝑚 corresponding to IDCS realisations. The
eported WRMSE is the final value averaged over all simulations. A
RMSE value close to one indicates an appropriate data fit while values

arger than one indicate that the data residuals are too large compared
o the data noise. In addition to those two metrics, and for each test case
he model realisation with the lowest root-mean-squared error (RMSE)
ith respect to the reference subsurface model is shown.

. Results

Three different training images are considered: (1) a multi-Gaussian
ield, (2) an isotropic field with connected high values and (3) bi-
ary channels, each corresponding to a full stationary image of size
500 × 2500 pixels representing an area of 250 × 250 m. Rather than
sing the entire image as a training image, a smaller section of 50 × 50

is selected, serving as the training image for the QS algorithm and
ariogram fitting. The three 50 × 50 m training images are shown
n Fig. 2 and their true and estimated covariance model parameters
standard deviation 𝜎, integral scale 𝓵 and shape parameter 𝜈) are
eported in Table 1. The multi-Gaussian image was generated using
he fast Fourier transform moving average (FFT-MA; Ravalec et al.,
000) method with an exponential model (𝜈 = 1). After generation,
t was re-scaled to have a mean of 0.07 m/ns (∼14.3 ns/m in slow-
ess units) and a standard deviation of 0.004 m/ns (∼0.8 ns/m). To
enerate an image with connected high values (Fig. 2b), the transfor-
ation by Zinn and Harvey (2003) was used. This field manipulation

ransforms an isotropic random Gaussian field of mean zero and unit
tandard deviation to a field in which high values are connected. After
he transformation, the image is re-scaled to have a mean of 0.07 m/ns
∼14.3 ns/m) and a standard deviation of 0.004 m/ns (∼0.8 ns/m). The
mage with binary channels is taken from Zahner et al. (2016) and
elocity values of [0.06, 0.08] m/ns([12.5, 16.6] ns/m) are assigned to the
hannels and surrounding matrix material, respectively.
6

Table 1
True and estimated training image statistics. Estimated values are based on a variogram
fitted to 30 000 samples drawn from a training image of size 500 × 500 pixels.

TI True Estimated

𝓁𝑥/𝓁𝑦 𝜈 𝜇 [ns/m] 𝜎 [ns/m] 𝓁𝑥/𝓁𝑦 𝜈 𝜎 [ns/m]

Gaussian 10∕5 1 14.33 0.83 10.57∕5.60 1.26 0.81
Connected
high values

– – 14.34 0.83 9.46∕9.66 0.92 0.81

Binary
channels

– – 13.58 1.83 27.22∕6.42 1.30 1.90

Following preliminary tests to determine the QS parameters (see
Appendix B), 𝑛 is set to 10 for the continuous models and to 25 for
the binary one as they result in the best simulation quality. To mitigate
the potential risk of sampling unfavourable candidates in the presence
of a finite and possibly small training image, 𝑘𝑐𝑎𝑛𝑑 is set to 100 for both
continuous and binary models. When performing MCMC inversion,
the original implementation of QS is used and 𝑘𝑟𝑎𝑛𝑘 is set to 1.2 (it
represents a probability rather than the number of candidates) and
𝑛 = 30 as those values lead to a good simulation quality (Gravey and
Mariethoz, 2020; Meerschman et al., 2013). The QS parameters remain
constant throughout the IDCS simulations and the MCMC inversion.

A model domain of size 5 × 10 m with 0.1 m discretisation is
considered yielding a total of 5000 model parameters. The forward
response is computed between different antenna locations in two bore-
holes separated by a distance of 5 m. The borehole on the right side
of the domain contains 25 source locations and the borehole on the
left contains 25 receiver locations (see Fig. 3a). The antennas are
located between 0.2 and 9.8 m depth with 0.4 m separating subsequent
antenna positions. Ray-paths between source–receiver pairs that exceed
angles of ±50◦ to the horizontal are filtered out and are not considered
during inversion. Consequently, the number of data points is 515. The
reference model (synthetic truth) is cropped from a portion of the full
2500 × 2500 pixels image that remains unused during the simulation
process, ensuring that there is no overlap with the training image. In all
case studies, the synthetic observed data corresponding to the reference
model are contaminated with normally distributed noise with mean
zero and standard deviation of 1 ns.

4.1. Linear physics

We first consider the results obtained from IDCS simulations con-
sidering different subsurface models and a linear physical response.

4.1.1. Multi-Gaussian random field
A total of 100 independent IDCS runs (each with a different sim-

ulation path) are considered given noise-contaminated synthetic data
corresponding to the reference model in Fig. 3a. As this example con-
siders a multi-Gaussian property field and linear physics, the analytical
solution (see Appendix A) of the posterior distribution can be computed
and used for comparison. The element-wise mean and standard devia-
tion of the analytical solution and the approximate posterior obtained
by IDCS are displayed in Fig. 3. The mean obtained from running 100
IDCS simulations (Fig. 3c) is almost identical to the analytical mean
(Fig. 3b) and the three IDCS posterior samples, representing the best
and worst data fit (Fig. 3d and e, respectively) as well as the closest
matching subsurface model realisation (Fig. 3f), are all reproducing
the patterns in the reference model. The standard deviation calculated
on the conditional realisations (Fig. 3h) underestimates (by 17% on
average) that of the analytical solution (Fig. 3g). This underestimation
is likely a consequence of using a finite training image and only 100
IDCS runs. As the simulations are conditioned on the observed data,
the data misfit is expected to gradually decrease during the simulation
to a WRMSE of one, representing realisations that fit the data to the
noise level. This behaviour is confirmed by our results, given that the
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Fig. 2. Training images for the various tested models. 500 × 500 pixels (50 × 50 m) section of (a) anisotropic, random Gaussian field, (b) isotropic field with connected high
values generated by applying the transformation in Zinn and Harvey (2003) and (c) binary channels.
Fig. 3. IDCS results for a multi-Gaussian random field and a linear forward solver. (a) Reference model with source (left) and receiver (right) antenna locations as red filled
dots, the (b) analytical and (c) approximate (IDCS) posterior pixel-wise mean, where the latter is computed on 100 IDCS realisations. IDCS realisations with the (d) lowest and (e)
highest data WRMSE while (f) is the IDCS realisation with the lowest model RMSE. Pixel-wise standard deviation of the (g) analytical and (h) approximate (IDCS) posteriors. (i)
The WRMSE curves of 100 IDCS runs as well as their mean.
Table 2
Summary of IDCS results for linear and non-linear physical responses. The mean SSIM
as well as the median data WRMSE computed on 100 IDCS runs for the three types of
models.

Physics TI type SSIM WRMSE

Linear
Gaussian 0.50 1.00
Connected high values 0.48 1.02
Binary channels 0.86 1.02

Non-linear

Gaussian 0.46 1.03
Connected high values 0.44 1.05
Binary channels 0.55 2.44
Binary channels (constant Jacobian) 0.60 2.56

median of the final WRMSE among the 100 realisations is 1.00 (Table 2)
and it is already around 1.01 after simulating 1850 grid cells (Fig. 3i).
7

4.1.2. Isotropic field with connected high values

A total of 100 independent IDCS runs are now considered given
noise-contaminated synthetic data corresponding to the reference
model in Fig. 4a. Since no analytical solution is available for this
case, the results are compared against eight independent MCMC chains
(see Section 3.1). Computational resources are provided to permit the
maximal performance of each method, namely, one CPU per chain for
MCMC (eight in total) and one CPU per simulation for the conditional
MPS simulations (100 in total). Both methods are executed on a cluster
that is equipped with AMD EPYC™ 7402 CPUs. It took 100 min to run
100 conditional QS simulations in parallel and 26 hours to perform
20 000 MCMC steps (per chain, in total 160 000 samples). For the
MCMC, a re-simulated sub-domain with a maximum size of 11 × 11
cells (𝛿 = 5) is used resulting in acceptance rate of 31% on average.
The MCMC chains did not converge after 20 000 iterations per chain
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Fig. 4. IDCS results for the isotropic field with connected high values and a linear forward solver. (a) Reference model, posterior pixel-wise mean computed on (b) MCMC samples
and (c) 100 IDCS realisations. IDCS realisations with the (d) lowest and (e) highest data WRMSE, while (f) is the IDCS realisation with the lowest model RMSE. Pixel-wise standard
deviations of the posterior approximated by (g) MCMC samples and (h) IDCS realisations. (i) The WRMSE curves of 100 IDCS runs as well as their mean.
and the 𝑅̂-values range from 1.27 to 8.42 with the median value being
4.54.

The reference model contains connected high-value features with
different orientations and those aligned vertically present challenges
in terms of identifiability in a crosshole setting. This is seen in the
posterior mean of both MCMC samples (Fig. 4b) and the IDCS reali-
sations (Fig. 4c). While the features that are horizontally-oriented are
present in the estimated posterior mean obtained from the IDCS, the
vertically-oriented ones are unresolved leading to a slightly lower SSIM
than in the previous test case (0.48 versus 0.50, see Table 2). This is
not a method-specific problem as similar SSIM values are observed for
the MCMC posterior samples (on average 0.48). The IDCS realisations
exhibit higher standard deviation (Fig. 4h) than those observed in
the MCMC samples (Fig. 4g). In both methods, the highest standard
deviation is observed where high-slowness features are present or at
the locations where they are poorly resolved. This is also seen in the
notable variability observed at these locations in the independent IDCS
realisations displayed in Fig. 4d–f. The median WRMSE among the
IDCS realisations is 1.02, indicating an overall appropriate data fit and
suggesting that the vertical features are not well constrained by the
data.

4.1.3. Binary channels
The last test case with linear physics is a binary reference model

with channel-like structures (Fig. 5a). No analytical solution is available
and, therefore, the IDCS results are again compared against those
obtained from eight MCMC chains. While the computation cost of the
IDCS runs is the same as in the previous example, it took 72 hours
to perform 20 000 MCMC steps (per chain). The longer computational
times are a result of a larger re-simulated sub-domain with a maximum
size of 17 × 17 cells (𝛿 = 8) leading to an average acceptance rate of
24%. As in the previous test case, the MCMC chains did not converge
after 20 000 iterations and the 𝑅̂-values range from 1.00 to 28.92 with
the median value being 1.36.

The posterior mean of the MCMC inversion (Fig. 5b) and the ap-
proximate posterior mean of the IDCS (Fig. 5c) reconstruct the channel
8

features well. In accordance with Zahner et al. (2016), the highest un-
certainty is concentrated around the boundaries of the channels (Fig. 5g
and h). While most IDCS realisations correctly reproduce the channels
in the reference model (e.g. Fig. 5d and f), seven IDCS realisations do
not locate channel material around 6–8 m (e.g. Fig. 5e) and one misses
it around 3.5–4.5 m. These eight realisations have significantly higher
WRMSE values (2.70–3.37) than the remaining realisations (average
WRMSE of 1.02, see Fig. 5j). These artefacts originate at an early stage
when matrix material is incorrectly placed where a channel should
be, thus forcing subsequent simulation steps to put additional matrix
material in the vicinity such that the resulting data misfit is high.
Nonetheless, the aberrant simulations are easily distinguishable from
the other simulations and can be regarded as outliers. One approach is
to calculate the Inter Quartile-Range statistic (IQR; Ter Braak and Diks,
2009) during the simulation and to discard those simulations that are
identified as outliers. This can be done either during the simulation
(to avoid redundant computation) or as a post-processing step. After
simulating approximately 23% of the grid (corresponding to 1138 grid
cells), the IQR statistics identify the eight aberrant simulations as
outliers. If these simulations are excluded, the uncertainty estimates be-
come comparable to those obtained from the MCMC posterior samples
(Fig. 5i).

4.2. Non-linear physics

In this section, results obtained when running IDCS with a non-
linear forward response (see Section 2.3.2) are presented. As the cal-
culation of the Jacobian is generally expensive, instead of calculating
𝐉 for each MPS candidate it is computed based on the kriging mean,
given the informed grid cells at step 𝑡: 𝝑(𝑡)

𝐼 . Accordingly, the number of
Jacobian updates reduces to the number of grid cells to be simulated.
To calculate the forward response, the pyGIMLi geophysical modelling
library (Rücker et al., 2017) is used to calculate the shortest path be-
tween a source and receiver pair given a slowness model. The accuracy
of the forward response depends on the number of secondary nodes

on the edges of the grid cell, allowing for more ray angles. Here the



Computers and Geosciences 187 (2024) 105581S. Levy et al.
Fig. 5. IDCS results for the binary channelised field and a linear forward solver. (a) Reference model, posterior pixel-wise mean computed on (b) MCMC samples and (c) 100
IDCS realisations. IDCS realisations with the (d) lowest and (e) highest data WRMSE, while (f) is the IDCS realisation with the lowest model RMSE. Pixel-wise standard deviations
of the posterior approximated by (g) MCMC samples, (h) IDCS realisations and (i) IDCS realisations excluding outliers. (j) The WRMSE curves of 92 good IDCS runs (light blue)
as well as their mean (dark blue line) and eight outlier simulations identified by the IQR statistic.
number of secondary nodes used to compute the Jacobian is limited to
two nodes in order to avoid too long computation times.

Running the IDCS with the aforementioned non-linear forward re-
sponse takes 21 hours on average. The mean of the approximate pos-
terior for the multi-Gaussian case (Fig. 6b) is similar to the reference
model (Fig. 6a) and the standard deviations of the 100 realisations
(Fig. 6f) are similar to the linear-physics case. The isotropic field with
connected high values results in similar posterior mean and standard
deviations (Fig. 6h and l, respectively) as with linear physics, however,
structures are less connected and are more patchy (Fig. 6i–k). In both
types of subsurface models, the SSIM metric was slightly reduced from
0.50 and 0.48 to 0.46 and 0.44 for the multi-Gaussian and the field with
connected high values, respectively (see Table 2 and Fig. 7). Although
the WRMSE is close to 1 in both cases, it increased by 0.03 compared
to the WRMSE reached with linear physics.

In contrast to the continuous test cases with its satisfactory results,
the application of non-linear physics to the binary channels model
yields a substantial decrease in the quality of the posterior approxima-
tion in comparison with the case of linear physics. The SSIM metric
is reduced from 0.86 to 0.55 and the WRMSE increased from 1.02
to 2.38. While the mean of the IDCS posterior (Fig. 8b) captures the
channel structure, it is excessively smooth. Additionally, the individual
realisations are of lower quality compared to those obtained with linear
physics. This can also be observed in the large uncertainty on the
boundaries as well as inside the channels (Fig. 8f). Correspondingly, the
WRMSE curves in Fig. 9a are scattered and none of the IDCS realisations
fit the data to the noise level. The underlying approximations (Gaus-
sianity, continuity, single Jacobian update for all candidates) together
with a higher level of non-linearity intensifies the aberrant simulations
problem already observed for the linear physics case in Fig. 5 when
considering this binary training image.

In an attempt to improve the results, the IDCS is run for the same
observed data, but with a constant Jacobian that is linearised around
the realisation corresponding to the lowest WRMSE (Fig. 8c). This ad-
ditional run adds 100 min of computation to the total computation time
9

(see Section 4.1.2) as the forward operator remains constant during the
simulation and no update is performed. The posterior approximation is
overall improved as characterised by an increase in SSIM to an average
of 0.60. Moreover, the mean of the posterior (Fig. 8g) becomes better
defined and the uncertainty within the channels is reduced (Fig. 8k).
The channel feature within the 6–8 m range still presents a signifi-
cant degree of uncertainty. Nevertheless, this specific feature posed
a challenge even in the linear case, as seen in Fig. 5h. The WRMSE
curves in Fig. 9b are calculated using the Jacobian linearised around
the realisation in Fig. 8c. While these exhibit an overall reduction in the
WRMSE, the real WRMSE of the final realisations (with the Jacobian
being computed for each individual realisation) has increased from 2.44
in the first run to 2.56 in the second run (Table 2).

5. Discussion

The proposed IDCS method successfully approximates the posterior
distribution when considering an ensemble of simulations (e.g., 100),
given linear physics, for both Gaussian and non-Gaussian reference
models. The IDCS runs are able to provide posterior approximations
that are comparable in quality to those obtained with MCMC, but at
a much lower computational cost. This applies also to the binary test
case, which poses a greater challenge as the values being discrete, while
the likelihood approximation assumes continuity and a Gaussian dis-
tribution. As a consequence of this discrepancy between the nature of
the model and the estimation method, a small fraction of the IDCS runs
introduce artefacts in the early stages, as matrix material is erroneously
placed in locations where channel material exists in the reference
model. Fortunately, these outlier simulations are easily distinguishable
and can be removed at an early stage or in a post-processing step using
statistical metrics for dispersion, such as the IQR.

In comparison with the block data method of Straubhaar et al.
(2016), our method estimates the influence of unknown parameters
and selects MPS candidates according to an approximate likelihood.
When considering non-linear physical responses and provided that the

forward response is differentiable and can be linearised, the Jacobian
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Fig. 6. IDCS results given reference models (a) and (g) and a non-linear forward solver. (b) and (h) Means of 100 IDCS realisations, (c) and (i) realisations with the lowest WRMSE,
(d) and (j) realisations with the highest WRMSE, (e) and (k) realisations with the lowest model RMSE and (f) and (l) the standard deviations of 100 IDCS realisations.
Fig. 7. Data WRMSE curves during the IDCS run given the reference model in (a) Fig. 6a and (b) Fig. 6g. The WRMSE is calculated at each simulation step using a non-linear
forward solver.
can be used to obtain the kriging error and a first-order approximation
of the forward response. Results for both continuous reference models
suggest that the IDCS is able to approximate the posterior well. This
is even the case when the forward response is non-linear, as there
is only slight deterioration in SSIM and WRMSE metrics compared
to the linear case. For the binary subsurface example, the issue with
aberrant simulations seen in the linear case is worsened in the non-
linear case likely due to a combination of the Gaussian approximation
and a poor ray coverage within the channels (see Appendix C). Pos-
sible improvements could be gained by using a different likelihood
approximation for binary or categorical model parameters as well as
using a multigrid procedure (Caers, 2001) to improve the continuity
of large scale features. The results from conducting a second run of
IDCS simulations, where the Jacobian is linearised around the best
data-fitting realisation from the initial run, show improvement of the
posterior approximation.

The results obtained by IDCS are inherently approximate due to
the finite training image (prior distribution), the limited number of
10
candidate values considered at each simulation step, and the approx-
imation of the intractable likelihood function. Testing of the influence
of the number of candidates (𝑘) and the number of neighbours (𝑛)
(see Appendix B) suggests that the quality of the simulation and the
data fit is less sensitive to changes in 𝑛 than in 𝑘. For a finite training
image with a fixed size, large 𝑛 (50 and above for a 500 × 500 pixels
training image) can potentially lead to pattern degradation and the
generation of artefacts. This is due to the limited number of distinct
patterns available in the training image. On the other hand, the choice
of 𝑘 represents a trade-off between structure and data fit. For large 𝑘,
the algorithm is forced to sample more values with decreasing pattern
similarity and some of them will be accepted by the algorithm as they
might lead to sufficiently low data misfit values. This means that the
optimal choice of 𝑛 and 𝑘 depends on the size of the training image and
the diversity of its patterns. Given that the algorithm is vectorised with
respect to 𝑘, increasing 𝑘 does not introduce additional computation
time. However, the computation time increases quadratically with the
size of the training image (Gravey and Mariethoz, 2020).
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Fig. 8. IDCS results for the (a) binary channelised subsurface reference model and a non-linear forward solver considering (b)–(f) IDCS runs with the Jacobian updated according
to the kriging mean and (g)–(k) considering subsequent IDCS runs with a constant Jacobian corresponding to the realisation in (c). (b) and (g) Means of 100 IDCS realisations, (c)
and (h) realisations with the lowest WRMSE, (d) and (i) realisations with the highest WRMSE, (e) and (j) realisations with the lowest model RMSE and (f) and (k) the standard
deviations of 100 IDCS realisations.
Fig. 9. Data WRMSE curves during the IDCS run given the reference model in Fig. 8a. The WRMSE in (a) is calculated at each simulation step using the linearised Jacobian
around the kriging mean while in (b) the WRMSE is calculated using a constant Jacobian corresponding to the realisation in Fig. 8(c).
The computational cost of the IDCS algorithm does not scale linearly
with the size of the model domain. Three factors come into play: the
increase in the number of simulation steps (linear effect), the need
to multiply a larger covariance matrix (Eq. (10); non-linear effect)
and the need for a larger training image (non-linear effect). In our
examples, the approximation of the likelihood for the linear case is
responsible for 97% of the computation time of a single simulation
step. Out of the time it takes to approximate the likelihood and return
a simulated value, 76% is spent on computing 𝜮̃𝐿 (Eq. (10)), 11%
on the (linear) forward response (for all candidates using vectorised
operations), 2% on the likelihood function (Eq. (11)) and the rest
on various small operations. This suggests that advanced matrix mul-
tiplication algorithms (e.g. Nowak et al., 2003) could help enhance
the efficiency of our approach and mitigate the impact of the matrix
multiplication operation in Eq. (10). When compared with MCMC,
IDCS is at least an order of magnitude faster for approximations of a
similar quality (the MCMC runs did not converge for the considered
computational budget). The number of forward simulations required in
11
a single IDCS run depends linearly on the number of cells to simulate
and on the 𝑘 candidates. In contrast, the computation time of MCMC
depends on the number of chains and the number of MCMC steps
needed to converge, which is unknown before running the inversion.
Using Gibbs sampling, the computational time is also influenced by the
size of the re-simulated domain. When the physical response is non-
linear, the number of Jacobian updates during the IDCS is equal to the
number of grid cells to be simulated (as described in Section 4.2). Thus,
IDCS provides a more predictable and efficient alternative compared
to MCMC inversions provided that the associated approximations are
acceptable. Furthermore, as simulations are independent, the number
of simulations that are running simultaneously scale with the number of
available processing units (either CPUs or GPUs). A further reduction in
the computational time can be achieved by conditioning the simulation
on indirect data only up to a stage where the data fit curve stabilises
and changes in the data misfit are small (e.g. around 2000 steps in
Fig. 7). At this stage, all necessary large-scale features are present to
which the rest of the simulation is constrained. This is exemplified
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in Figure 2 in Laloy et al. (2016), which suggests that when re-
simulated parameters are distributed throughout the model domain, a
large fraction of the domain has to be re-simulated (50% and above) to
obtain significant large differences in the likelihood (and as a result in
the data RMSE). The effect of such an approach on the results would
need to be tested but the potential reduction in the computational time
is substantial.

The IDCS method is suitable when a conceptual model of the subsur-
face is available in terms of a training image and the physical response
is either linear or can be linearised. Examples with linear physics
include: tomographic problems where parameters are integrated along
straight lines such as muon (Rosas-Carbajal et al., 2017) and X-ray
tomography, as well as potential-field applications such as gravity,
magnetics (Blakely, 1996) and the self-potential method (Revil and
Jardani, 2013). The method can of course also be used, as in this
example, when a linear physics assumption might be acceptable as
in GPR amplitude inversion (Jensen et al., 2022). Some additional
improvement could probably be gained by using a preferential path
strategy (Hansen et al., 2018; Jóhannsson and Hansen, 2023). This
approach prioritises the simulation of locations that are highly con-
strained by the available data, such as those traversed by multiple
rays and thereby, might decrease the risk of introducing artefacts. In
challenging scenarios where conditional MPS simulations struggle to fit
the data, particularly in cases involving categorical models, the approx-
imation can be improved by using the MPS conditional realisations as
an initial solution for MCMC chains. For instance, one can run multiple
conditional MPS simulations and use the realisations that fit the data
best to initialise the MCMC chains. By doing so, the burn-in period is
effectively shortened and possibly, convergence is enhanced compared
to using MCMC only.

6. Conclusions

We have introduced a novel approach for conditioning multiple-
point statistics simulations to geophysical data represented as linear
averages over the model domain. These linear averages are either con-
stant during the simulation (linear physics) or varies as the simulation
is built up (non-linear physics). Our method, named IDCS, is stochastic
in nature and offers an efficient framework for approximating the pos-
terior distribution by performing many simulation runs in parallel. The
conditioning of the geophysical data is performed, for each simulated
grid cell, by drawing 𝑘 conditional values from the prior and accepting
ne of them proportionally to a kriging-based approximation of the
ntractable likelihood. In non-linear problem settings, the forward re-
ponse has to be linearised, leading to a first-order approximation of the
ikelihood. Considering crosshole ground-penetrating radar data, the
ethod was found to successfully approximate the posterior distribu-

ion for three subsurface models: multi-Gaussian, field with connected
igh values, and binary channels. Its main practical limitation is that
he computational time scales non-linearly with the size of the model
omain due to operations involving the covariance matrix. Nonetheless,
or the model size tested in this paper, IDCS was found to be one
o two orders of magnitude faster than MPS-based MCMC inversion
onsidering a posterior approximation of similar quality. Possible di-
ections for future work include more sophisticated approaches to
pproximate the intractable likelihood, enhance the efficiency of IDCS
y exploring more sophisticated matrix multiplication techniques and
se more elaborate simulation strategies (i.e. ending data conditioning
hen the data misfit is sufficiently low).
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Appendix A. Analytical posterior PDF for a multi-Gaussian field

Under the assumptions of linear physics and a Gaussian prior 𝜽 ∼
 (𝜽;𝝁𝜃 ,𝜮𝜃), where 𝝁𝜃 and 𝜮𝜃 are the mean and covariance of the
property field of interest 𝜽, there exists an analytical expression for the
posterior PDF 𝑝(𝝑|𝐝). Considering normally distributed observational
noise, the likelihood can be expressed as follows:

𝐝|(𝜽 = 𝝑) ∼  (𝐝;𝐆𝝑 + 𝐛,𝜮𝑑 ). (28)

A closed-form expression for the posterior is then obtained by
Bishop and Nasrabadi (2006)

𝐝 ∼ (𝐝;𝐆𝝁𝜃 + 𝐛,𝜮𝑑 +𝐆𝜮𝜃𝐆𝑇 ) (29)

𝜽|𝐝 ∼ (𝜽;𝜮
{

𝐆𝑇𝜮−1
𝑑 (𝐝 − 𝐛) +𝜮−1

𝜃 𝝁𝜃
}

,𝜮), (30)

where 𝜮 = (𝜮−1
𝜃 +𝐆𝑇𝜮−1

𝑑 𝐆)−1.

Appendix B. Choice of QS parameters

There are two main hyper-parameters in the QS implementation
used herein: (1) 𝑘𝑐𝑎𝑛𝑑 the number of candidates proposed by QS,
sorted in ascending order of mismatch (in the original implementation
of Gravey and Mariethoz (2020), 𝑘𝑟𝑎𝑛𝑘 is a rank that represents the
probability of sampling the sorted candidates) and (2) 𝑛 the number of
informed grid cells around the simulated location on which to calculate
the misfit map. To determine the appropriate values for 𝑘𝑐𝑎𝑛𝑑 and
𝑛, several IDCS simulations are run for different 𝑘𝑐𝑎𝑛𝑑 and 𝑛 values.
The different runs are compared with respect to the SSIM and the

WRMSE, and the different realisations are visually inspected. During

https://github.com/ShiLevy/IDCS
https://github.com/ShiLevy/IDCS
https://github.com/ShiLevy/IDCS
https://github.com/ShiLevy/IDCS
https://github.com/ShiLevy/IDCS
https://github.com/ShiLevy/IDCS
http://p3.snf.ch/project-184574
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Table B.1
Average model SSIM and data WRMSE for 50 × 50 pixels simulation given different
𝑘 values and training image size of 500 × 500; these are calculated on 10 different
simulations.
𝑘 𝑛 TI type SSIM WRMSE

10 10

Gaussian

0.49 1.02
25 10 0.49 1.01
50 10 0.51 1.00
100 10 0.51 1.00
500 10 0.52 1.00

10 10

Connected high values

0.47 1.04
25 10 0.56 1.02
50 10 0.50 1.02
100 10 0.54 1.02
500 10 0.49 1.01

10 25

Channels

0.66 4.14
25 25 0.84 1.81
50 25 0.89 1.05
100 25 0.89 1.05
500 25 0.89 1.04

Table B.2
Average model SSIM and data WRMSE of 10 simulations given a connected high values
model of size 50 × 50 pixels for different 𝛼 values, 𝑘 = 100 and 𝑛 = 10.
𝛼 SSIM WRMSE

0 0.54 1.02
0.03 0.53 1.02
0.3 0.48 1.03

initial testing, it was observed that the optimal QS parameters for
unconditional QS simulations differ from those deemed optimal for
IDCS simulations and, therefore, the determination of optimal MPS
parameters should be investigated within the IDCS framework.

Although large values are usually recommended for 𝑛 in MPS simu-
lations (≥ 30; Gravey and Mariethoz, 2020; Meerschman et al., 2013), it
is found that 𝑛 has little effect on the data fit and that better simulation
quality (based on visual appearance and SSIM values) is achieved for
small 𝑛 (10) when the model parameters are continuous. For 𝑛 ≥ 25
the quality of the simulation decreases significantly and the realisations
become noisy. For the binary channels model, a balance between the
quality of the simulation (reflected in better visual appearance with
less artefacts) and good model fit is found for 𝑛 = 25. This difference
in the optimal 𝑛 between the continuous and binary models may be
the result of the features’ different characteristic sizes. It can be seen in
Table 1 that the binary training images have larger correlation lengths,
thus, the larger the radius within which neighbours contain relevant
information.

As the value of 𝑘𝑐𝑎𝑛𝑑 increases, the WRMSE decreases and ap-
proaches 1.00 (see Table B.1). With a larger 𝑘𝑐𝑎𝑛𝑑 , there is a larger
chance that one of the proposals have a high likelihood. In most of the
tested models, the model’s SSIM values generally show improvement
when 𝑘𝑐𝑎𝑛𝑑 is increased to 100. Further increasing 𝑘𝑐𝑎𝑛𝑑 to 500 enhances
the SSIM only for the Gaussian model, possibly due to the greater
variety of patterns and values present in a continuous Gaussian training
image. It is important to note that raising 𝑘𝑐𝑎𝑛𝑑 too much can introduce
undesired artefacts. This occurs because the algorithm is forced to gen-
erate more candidates, which given a finite training image, inevitably
leads to a decrease in their quality.

Additionally, Gravey and Mariethoz (2020) indicated that using a
weighting kernel can improve the quality of the QS simulation. Tests
with the weighting kernel 𝑤 = 𝑒−𝛼||𝑑||2 on the connected high values
model were performed, where 𝑑 is the distance from the simulated
pixel, 𝛼 is the kernel parameter and || ⋅ ||2 is the Euclidean distance.
This kernel gives more weight to closer neighbours as the 𝛼 increases.
Nonetheless, this type of kernel did not lead to improvements for our
considered examples (see Table B.2).
13
Fig. C.1. True sensitivity associated with the tested subsurface models in Section 4.2.
(a)–(c) The reference models and (d)–(f) their associated ray paths.

Appendix C. Impact of the sensitivity matrix

When attempting to approximate the posterior of the binary chan-
nels subsurface model (Fig. C.1c) using linear physics, anomalous sim-
ulations are observed. This was attributed to the Gaussian approxi-
mation involved in computing the kriging mean and covariance to
approximate the likelihood. This problem worsens in the presence of
non-linear physics as the ray path is now a function of the slowness
field. When examining the ray paths (sensitivity) given the different
test models (Fig. C.1), it becomes evident that the multi-Gaussian and
connected high values models exhibit a more consistent and even
coverage (Fig. C.1d and e). Conversely, the binary channel model is
distinguished by its elongated features with sharp boundaries having a
significant impacts on the ray path and leading to poor ray coverage
within the channels. This limited ray coverage (Fig. C.1f) together
with the Gaussian approximation, leads to suboptimal results. When
inverting the slowness values between the channels and the matrix
material (i.e., channels characterised by higher velocity), the results
significantly improve. Only a single outlier simulation is identified by
the IQR, and after its removal the SSIM and WRMSE are 0.68 and 1.22
(compared to 0.55 and 2.44 in the original test case), respectively.
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