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Abstract
The practice of oncology has dramatically changed in the last decade with the introduction of molecular tumor profiling into routine tumor diag-
nostics and the extraordinary progress in immunotherapies. However, there remains an unmet need to explore personalized dosing strategies 
that take into account the patient’s sex and gender to optimize the balance between efficacy and toxicity for each individual patient. In this 
mini-review, we summarize the evidence on sex and gender differences in toxicity of anticancer therapies and present data on dose reduction 
and dose discontinuation rates for selected chemotherapies and targeted therapies. Finally, we propose the investigation of body composition 
(specifically fat-free muscle mass) as a viable approach for personalized treatment dosage.
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In the last decade, the practice of oncology has profoundly 
changed with the introduction of molecular tumor profiling in 
routine tumor diagnostics and the extraordinary progress in 
immunotherapies. Yet, largely missing in treatment decisions 
is the integration of a patient’s sex and gender as a critical 
modulator of their cancer risk and potential treatment out-
comes. Despite the significant progress in treatment options 
for most cancer types, there remains an unmet need to ex-
plore personalized dosing strategies that take into account the 
patient’s sex and gender to subsequently optimize the balance 
between efficacy and toxicity for each individual patient.

In this mini-review, we discuss the evidence pertaining to 
observed sex differences in the toxicity of anticancer ther-
apies, present data on dose reduction and dose discontinu-
ation rates for selected drugs, and propose the investigation 
of body composition–based drug dosing as a viable approach 
to personalize cytotoxic agents and targeted therapies. To ob-
tain information for this mini-review, we performed a litera-
ture search on PubMed in January 2022 using the terms “sex 
differences,” “gender,” “cancer,” and “drug toxicity” and also 
manually searched the reference lists of several publications 
of interest.

Sex vs Gender
The terms “sex” and “gender” are often used interchangeably 
in scientific literature (1), although this can be misleading as 

there are important distinctions between the terms. Sex refers 
to a person as female and male based on their biological fea-
tures assigned by their gonads and sex chromosomes. As such, 
sex-related differences are the result of the interplay between 
genetic, hormonal, and physiological traits. Gender, on the 
other hand, is based on a person’s cultural self-identification 
as a woman or man and also encapsulates how that person 
may be perceived by society given their presentation (1). 
Gender-based differences arise in part from environmental 
factors related to the sociocultural roles of women and men. 
Often these biological and environmental factors are entan-
gled and interact with each other. In this mini-review, we 
use the terms “female,” “woman,” and “women” to refer to 
people who were assigned female sex at birth and socially 
self-identify as women. Likewise, we use the terms “male,” 
“man,” and “men” to refer to people who were assigned male 
sex at birth and socially self-identify as men. We acknowledge 
that there are likely important gender-based differences in 
anticancer treatment toxicity among transgender people that 
should be further examined in future work as it is beyond the 
scope of this mini-review.

Women Have a Higher Risk of Experiencing 
Adverse Drug Reactions
A patient’s sex is a key modulator of drug responses (2, 3), 
which is expected given the important biological differences 
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between women and men that can affect many aspects of treat-
ment. Multiple analyses from different countries have shown 
that women have a 1.5- to 2-fold greater risk for developing 
adverse drug reactions (ADRs) across all drug classes and are 
significantly more likely to be hospitalized because of ADRs 
than men (4, 5). This increased ADR risk among women may 
be related to the fact that many Phase I and Phase II clinical 
drug trials are conducted predominately among men (6, 7) 
and the optimal drug dosings that are subsequently derived 
from these trials are likely not generalizable to women. These 
underexamined sex differences in drug dosing can have ser-
ious implications. Of the 10 drugs withdrawn from the US 
market between 1997 and 2000, 80% were found to repre-
sent a greater health risk for women than for men and 37% 
of the FDA-approved drugs between 2000 and 2002 were 
found to have sex differences in pharmacokinetics, efficacy, 
or adverse events (AE) (8). However, no recommendation on 
sex-based dose adaptation was made (9), possibly based on 
the erroneous assumption that these differences are not clin-
ically relevant.

Various sex- (biological) and gender-related (psychosocial 
and societal) factors might contribute to the disproportionately 
higher ADR susceptibility among women than men. These 
include sex differences in pharmacokinetics and pharmaco-
dynamics, gut microbiota composition (10, 11), sex-specific 
organizational (early life) and activational (peripubertal 
through adulthood) endogenous sex hormone exposure, sex 
differences in exogenous sex hormone supplementation (eg, 
oral contraceptives, menopausal hormone replacement ther-
apies), higher rates of polypharmacy in women with a conse-
quently greater risk of potential drug–drug interactions, and 
gender differences in the reporting or recall of ADRs (with 
women being more frequent reporters) (12). Importantly, sex 
differences in pharmacokinetics predict ADR across multiple 
classes of drugs, including antineoplastic agents (5).

Women present significantly higher blood drug concentra-
tions and longer drug elimination times than men when admin-
istered the same drug dose. This is possibly related to the greater 
plasma volume, organ perfusion, and the approximately 10% 
higher body fat in women (13). Given the binding of drugs to 
erythrocytes, the lower hematocrit levels in women might also 
contribute to this excess drug toxicity (14). Sex differences in 
the expression levels of drug-metabolizing enzymes resulting 
from genetic polymorphisms (eg, cytochrome P450 isoforms; 
“pharmacogenetics”) may also play a role (15). While data on 
differential expression of various CYP450 isoforms provide 
either conflicting results or do not indicate moderation by sex; 
the isoform CYP3A (which accounts for the metabolism of 
about 50% of drugs) has been reported to have a 25% higher 
activity in women (16). In contrast, the expression levels of the 
drug efflux pump P-gp encoded by the MDR1 gene are higher 
in men and might partially explain the lower toxicity rate ob-
served in men (17). Indeed, sex steroids were found to regulate 
P-gp expression and increase drug absorption through blocking 
of P-gp activity in the small intestine of rats (18). A comprehen-
sive review of sex differences in pharmacokinetics and pharma-
codynamics can be found in (3).

Several pharmacokinetic analyses have found that women 
have a lower elimination capacity for various anticancer drugs, 
including cytotoxic agents (ie, paclitaxel (19), 5-fluorouracil 
[5-FU] (20), doxorubicin (21)), tyrosine kinase inhibitors (ie, 
imatinib (22), sunitinib (23)), and monoclonal antibodies 

(ie, bevacizumab (24) and rituximab (25)), which results in 
higher plasma levels (Table 1). There are significant sex differ-
ences in renal function (which is taken into account in renal 
function calculators (48, 49)), with men having an average of 
20% greater renal function than women (50). Despite these 
well documented sex-related differences, most analyses of 
anticancer drug elimination and distribution do not even in-
clude sex as a covariate. In a literature survey of 256 popu-
lation studies on anticancer agents, only 80 reported that sex 
was included as a covariate in the analytic models (51).

Flat Doses and Doses Based on Body Surface 
Area Hamper Personalized Anticancer 
Treatment
A recent study of over 23 000 patients (38% women) in Phase 
II and III clinical trials found that female sex was associated 
with a higher risk of experiencing toxicity from anticancer 
therapies (52). Unger and colleagues analyzed individual pa-
tient data from 202 Phase II and III clinical trials testing sys-
temic anticancer therapies and severe treatment-related AEs. 
Their findings indicated that women had 34% greater risk 
of severe toxicity than men (odds ratio [95% CI] 1.34 [1.27-
1.42], P < .001). Moreover, this increased odds of AEs among 
women persisted across treatment type (chemotherapies, tar-
geted therapies, immunotherapies), AE type (symptomatic 
or hematological), and treatment setting (advanced vs ad-
juvant) (52). Although it is possible that some of these AEs 
may be due to social gender differences in the reporting of 
symptomatic AEs, the higher odds of objective hematological 
toxicity clearly point to the presence of biological sex differ-
ences in pharmacokinetics and/or pharmacodynamics which 
modulate the patient’s sensitivity toward adverse effects. The 
sex-specific toxicities likely result from both increased drug 
exposure through hormonal regulation of proteins involved 
in drug metabolism and via the direct effect of sex hormones 
on the drug target (13). Given the lack of a systematic col-
lection of information on menopause status, the dose and 
type of hormonal contraception and the measurement of sex 
hormone levels in clinical trials, the magnitude of the hor-
monal effects remains unknown.

In addition, the individual genetic background/ethnicity 
as well as differences in gut microbiota diversity and com-
position and diet also potentially contribute to the observed 
sex differences (53). In fact, microbiome profiling in age- and 
diet-matched individuals indicates that the microbiota com-
position can be affected by gender in a body mass–dependent 
manner (54). Yet, given the complexity of the crosstalk be-
tween immune responses, microbiome, and sex hormones, 
dissecting the individual contribution of each of these factors 
is challenging (11).

Despite the abovementioned sex differences and the basic 
paradigm of clinical pharmacology that drug effects are gen-
erated from the circulating concentration profile of a drug 
rather than directly by the dose itself, dosage recommenda-
tions for anticancer drugs are not sex specific and most agents 
are administered either as flat doses (eg, tyrosine kinase in-
hibitors and some antibodies) or according to body weight 
(eg, some antibodies such as bevacizumab and ipilimumab) 
or body surface area (BSA; eg, cytotoxic agents). The recom-
mended chemotherapy doses are meant to represent the dos-
ages with the best therapeutic window showing the highest 
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efficacy at the maximum tolerable dose (MTD). However, 
drug dose has been demonstrated to have a positive cor-
relation with drug-related toxicity in Phase I  trials (55). 
This phenomenon may be occurring given that the recom-
mended anticancer drug dosages are often developed from 
clinical trial data among predominately male study popu-
lations and may have limited generalizability. Considering 
that women are consistently underrepresented in all phases 
of drug testing in clinical trials (6, 7), the MTD may actually 
be lower in women. As such, the administration of current 
standard doses may lead to increased blood drug concentra-
tions and toxicity in women. Indeed, higher toxicity rates 
for most of the commonly applied cytotoxic agents have 
been reported among women than among men (Table 1). 
In addition, there is an increasing population of old, obese, 
or underweight cancer patients who are often undertreated 
because of arbitrary reductions of the calculated doses based 
on body weight or BSA and the use of an idealized body 
weight or capping of the total dose, although it was shown 
that BSA-based dosing is safe for obese patients (56, 57). 
However, obese patients can be sarcopenic and at risk of ex-
cess toxicity. Until the impact of sarcopenia and other meas-
ures of body composition on optimal antineoplastic dosing 
has been addressed, clinical guidelines recommend using 
the full, approved doses of anticancer treatments for obese 
adults with cancer (58, 59).

Interestingly, although obesity is a risk factor for cancer and 
treatment toxicity, recent analyses suggest that some degree 
of obesity (body mass index >30 kg/m2) might be protective, 
with obese cancer patients showing better responses to treat-
ment than lean patients, in particular for immune checkpoint 
inhibitors and targeted therapies (60, 61). This phenomenon 
is termed the “obesity paradox” and has been reported for 
different cancer types. Visceral adipose tissue is in fact con-
sidered an endocrine organ, responsible for secreting various 
factors which regulate innate and adaptive immunity, hem-
atopoiesis, and angiogenesis (62).

Calculations based on BSA do not provide an accurate 
optimal therapeutic window for both sexes because this ap-
proach does not take into account sex differences in body 
composition and pharmacokinetics. As a comparison of 25 
BSA formulas has shown, the BSA value may differ by 0.5 m2 
depending on the formula used for the calculation (63). 
Additionally, the Du Bois and Du Bois formula for the BSA 
calculation was developed solely from the data derived from 
9 male individuals (64) and may be a less effective measure-
ment tool among females. Similarly, according to 3 BSA bands 
(ie, 1.7 m2, 1.7-1.9 m2, ≥1.9 m2) the dosing of the cytotoxic 
drugs cisplatin, docetaxel, paclitaxel, doxorubicin, irinotecan, 
and topotecan yielded comparable target area of the curve 
values as dosing according to the calculated individual BSA, 
highlighting the inexactitude of the BSA method (65).

Alternative chemotherapy dosing strategies have been 
studied (ie, dose-dense regimens and toxicity- or response-
guided regimens) and are successfully incorporated in the 
management of hematological malignancies (66, 67). In con-
trast, pharmacokinetically guided dose adaptation (thera-
peutic drug monitoring) or genotyping for drug-metabolizing 
enzymes with known genetic polymorphisms have not been 
adopted for routine clinical use. This is due to several factors, 
most importantly due to the lack of an established therapeutic 
range for the majority of cytotoxic drugs, the scarcity of gen-
etic studies characterizing the expression of specific enzyme 

variants, and the insufficient progress that has been made in 
investigating the factors responsible for sex-related pharma-
cokinetic differences (68).

Compared with cytotoxic agents, the impact of sex on 
the type, frequency, and severity of the toxicity from tyro-
sine kinase inhibitors (TKIs) is largely unknown for many 
recently approved targeted therapies (69). Depending on the 
targeted signaling pathway (eg, EGFR, ALK, VEGFR, BRAF), 
TKIs show highly variable dose reduction (4-70%) and dis-
continuation rates for toxicity (6-24%, Table 2). According 
to a meta-analysis of Phase I  trials of TKIs, treatment with 
intermediate doses (40-80% of the MTD) is associated with 
better survival than lower or higher doses (81). For instance, 
subgroup analysis by age in the METEOR trial investigating 
the TKI cabozantinib in renal cell carcinoma showed that pa-
tients aged 65-74 years and 75 years or older had an average 
daily median dose of 41 mg and 33 mg, respectively, com-
pared with the recommended standard dose of 60 mg daily. 
However, their response rate (21% vs 19%, respectively) was 
very similar to that of the total trial population receiving 
cabozantinib (17%) (82).

Fat-free Muscle Mass Could Become a Novel 
Parameter for Drug Dosing in Oncology
The high toxicity rate of anticancer treatments has a negative 
impact on the quality of life of cancer patients, and strategies 
to diminish AEs without affecting efficacy need to be ex-
plored. One possible strategy to decrease toxicity rates could 
be personalized dosing according to the body composition of 
the patient.

Drug metabolism is affected by body composition, spe-
cifically the metabolically active fat-free body mass (FFM). 
A  single abdominal computed tomography scan without 
contrast enhancement of the L3-L4 region is sufficient to 
measure the FFM and body composition in an individual 
patient, as it shows a strong correlation with whole body 
adipose tissue, muscle, and lean tissue mass (83). The FFM 
is significantly higher in men; in a man and a woman of 
equal weight and height, the FFM accounts for 80% and 
65% of the man’s and woman’s body mass, respectively 
(84). The FFM also decreases with increasing age (85), 
highlighting potentially significant differences in drug me-
tabolism by age (younger vs older patients) in addition to 
sex (male vs female patients).

In a meta-analysis of 28 studies including over 6000 metastatic 
renal cell carcinoma patients, low muscle mass was associated 
with a significantly higher toxicity rate of the TKIs sunitinib and 
sorafenib and a higher mortality rate (86). In a retrospective ana-
lysis of 107 children, a higher skeletal muscle density at diagnosis 
was associated with lower odds of severe hematological toxicity 
of chemotherapies (87). Also, a prospective trial with 60 colon 
cancer patients receiving adjuvant 5-FU treatment found that 
20 mg 5-FU/kg lean body mass was the threshold for developing 
overall toxicity, which shows the potential utility of body com-
position as a dosing parameter (88). Given this evidence, dosing 
of chemotherapies and targeted therapies based on the FFM 
would take into consideration important patient characteristics, 
such as sex, age, and body composition. This proposed approach 
to anticancer drug dosages could lead to a valuable improvement 
in the quality of life of cancer patients, including protecting them 
from unnecessary toxicity without compromising the efficacy of 
their treatment.
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Conclusions
Compared with the progress made in drug development, the 
optimization of drug dosing lags significantly behind in the 
field of oncology. Given the different body composition of 
women and men, the administration of recommended drug 
doses established from studies with predominantly male 
populations may lead to increased blood drug concentra-
tions and toxicity in female patients. In the era of precision 
medicine, a patient’s biological sex and gender needs to be 
taken into account for treatment decisions. As such, the rep-
resentation of women needs to be increased in clinical trials, 
and trials should be designed to allow meaningful subgroup 
analysis by sex for both drug response and drug toxicity. 
Prospective studies testing the dosing of cytotoxic agents and 
targeted therapies according to the FFM could represent a vi-
able alternative to the current BSA-based or fixed dosing, and 
significantly improve the balance between the toxicity and ef-
ficacy of anticancer therapies.
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