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Abstract

In this paper, we consider a discrete-time risk process allowing for delay in claim set-
tlement, which introduces a certain type of dependence in the process. From martingale
theory, an expression for the ultimate ruin probability is obtained, and Lundberg-type
inequalities are derived. The impact of delay in claim settlement is then investigated.
To this end, a convex order comparison of the aggregate claim amounts is performed
with the corresponding non-delayed risk model, and numerical simulations are carried
out with Belgian market data.
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1 Introduction

In classical risk theory, the stochastic process describing the aggregate claim amounts filed

against the insurance company is assumed to have independent increments. In a variety of

situations this independence assumption appears rather unrealistic. This is for instance the

case when considering delay in claim reporting or settlement. The financial result of a given

calendar year then depends on the result of one or several preceding years.

In the literature, some risk models allowing for delay in claim settlement have been discussed.

Waters and Papatriandafylou (1985) considered a discrete-time risk model with possible de-

lay in claim settlements and derived upper bounds on the ultimate ruin probability. Boogaert

and Haezendonck (1989) studied the mathematical properties of the liability process with

settlement delay within the framework of an economical environment.
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Klüppelberg and Mikosch (1995) proposed to describe delayed claims in terms of Poisson

shot noise processes. Ruin estimates for this model have been studied by Brémaud (2000),

who used large deviations theory to give Cramér-Lundberg type approximations for the ul-

timate ruin probability, see also Macci and Torrisi (2004) and Macci et al. (2005). More

generally, Ganesh and Torrisi (2006) considered shot-noise Cox processes and obtained ruin

probability estimates for heavy-tailed claims.

A risk process combining delay in claim settlement and reserve-dependent premium rate can

be found in Ganesh et al. (2007), where asymptotic estimates of the ultimate ruin proba-

bility as well as a most likely path leading to ruin are derived. Yuen et al. (2005) consider

a compound Poisson risk model in which each claim induces an additional delayed claim

(called by-claim).

In this paper, we study ruin problems in the presence of delay in claim settlement with

a discrete-time risk model. Our approach is quite different from the one in Waters and

Papatriandafylou (1985). In Waters and Papatriandafylou (1985), the claims development

referring to a calendar year operates in a stochastic way, while the ruin event occurs when

the reserves for IBNR (incurred but not reported) claims that the insurer needs exceed the

amount of available cash. Here, on the other hand, we use a setting that incorporates the

Chain-Ladder development factors, widely used in practice to account for IBNR claims. In

particular, we assume that the payment of each annual claim is spread over several years

according to the development factors (where the spread is applied in a deterministic fash-

ion). This leads to a moving average model for the annual claims that describes in a certain

way the dependence of annual claims caused through delayed claims and that allows for a

transparent comparison of ruin probabilities with and without IBNR dynamics.

Besides the actuarial setting adopted in this paper, the model used here has a number of

other potential applications to non-insurance situations. For instance, it may describe a

warranty management process where some of the items sold may become defective and must

be repaired at producer’s cost. The producer may then set a yearly provision intended to

cover the cost of future repairs to items sold during that year (the insurance premium).

Some of these items become defective during the year they are sold, one year afterwards,

two years afterwards, and so on until the end of the warranty period, causing random costs

(the insurance claims). If in addition to the yearly provisions there is also some additional

reserve for the future repairing costs, the analogue of the ruin event in this context is then

the situation that the money reserved for repairing is not sufficient at some point in time.

In a medical context, the number of individuals affected by a disease may be diagnosed in the

year of its occurrence, one year afterwards, two years afterwards etc. A health provider may
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then set provisions in order to cover the future treatment costs and again the above model

may be appropriate to study whether the provisions are sufficient. More generally, the model

may be applicable whenever there are random events (or shocks) that have quantitative (e.g.

monetary) adverse effects on several of the subsequent time units and these random events

are counterbalanced by deterministic quantitative protection cushions.

The paper is organized as follows. In Section 2, we describe the risk model used in this

paper for the insurer’s surplus. In Section 3, we use the martingale method to obtain an

explicit expression for the ultimate ruin probability for light-tailed claims. A generalization

to the case of a surplus dynamics with a constant interest rate is illustrated in the appendix.

Subsequently Lundberg-type inequalities are derived. In Section 4, asymptotic estimates

for ultimate ruin probabilities are determined in terms of the Lundberg coefficient, and

an insensitivity property of our model is highlighted. This property is also proved for the

heavy-tailed case. Finally, in Section 5, the impact of this kind of IBNR dynamics on ruin

probability is investigated both for the light-tailed and heavy-tailed claim case. A comparison

is made with the associated non-delayed risk model. We establish, for instance, a convex

order relation between the IBNR aggregate claims process and the non-delayed aggregate

claims process. Numerical illustrations are then performed with Belgian market data.

2 The Model

Let n be the number of years needed to settle all the claims related to a given accident year.

Let Xi be the amount paid in calendar year i for the claims occurring in the same year. The

Xis are assumed to be independent with common distribution function FX , and we denote

as X a generic random variable with distribution function FX . The annual claim amount of

the company is assumed to be given by

Yi = Xi +Xi−1(λ1 − 1) +
i−2∑

j=i−n+1

Xj (λi−j − 1)

i−j−1∏

l=1

λl, (2.1)

where the λis are called development factors and are larger than 1. In practice, these factors

are associated to the Chain-Ladder method for loss reserving. So, for our model, the surplus

of the insurance company at time k obeys the dynamics

Uk = u+ k c−
k∑

i=1

Yi, (2.2)

with Yi described by (2.1), where u is the initial amount of capital and c is the annual pre-

mium income.
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Remark 1: Notice that Yi can alternatively be written as

Yi = β1Si + β2Si−1 + · · ·+ βnSi−n+1, (2.3)

where Si is the ultimate cost for the claims originated in year i and βj is the proportion of

Si paid after j years. Some practitioners prefer the representation (2.3) rather than (2.1).

Assuming that the Sis are independent and identically distributed like S, the equivalence

between (2.1) and (2.3) results from Si = Xi

∏n−1
j=1 λj, β1 = 1Qn−1

j=1 λj
and

{
β2 = λ1−1

λ1
if n = 2

βj =
(λj−1−1)

Qj−2
l=1 λlQn−1

l=1 λl
j = 2, . . . , n if n > 2.

(2.4)

Remark 2: All the results obtained in this paper can be extended without difficulty to the

case of link factors depending on accident years, keeping the Xis independent and identically

distributed and imposing the same distribution function for the ultimate costs relating to

each accident year, i.e.
∏n−1

j=1 λ
(i)
j = d for all i and for a certain value of d, where the λ

(i)
j ’s,

j = 1, . . . , n− 1 are now the link ratios for accident year i. Such an extension is in line with

practice, as speed in settlement may vary over time. In this context, the equation (2.1) then

becomes

Yi = Xi +Xi−1(λ
(i−1)
1 − 1) +

i−2∑
j=i−n+1

Xj (λ
(j)
i−j − 1)

i−j−1∏

l=1

λ
(j)
l . (2.5)

3 Ultimate ruin probability for light-tailed claims

3.1 Expression for the ultimate ruin probability

Define {
d1 = λ1 − 1

di = (λi − 1)
∏i−1

l=1 λl i = 2, . . . , n− 1,
(3.1)

and d = 1+d1+· · ·+dn−1. Clearly, d =
∏n−1

j=1 λj. Let us denote the ultimate ruin probability

as

ψ(u, x0, x−1, . . . , x−n+2) =

Pr[Uk < 0 for some k|U0 = u,X0 = x0, X−1 = x−1, . . . , X−n+2 = x−n+2]. (3.2)

We are now in a position to establish the following result. Its proof is inspired by Gerber

(1982).

In the following, for a random variable Z, we will denote by µZ and σ2
Z its mean and

variance, respectively. Furthermore, its distribution function will be denoted by FZ = 1−FZ .
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Theorem 3.1. Assume that there exists a constant ρ > 0 such that

e−
ρ
d

c E[eρX ] = 1. (3.3)

Then we have

ψ(u, x0, x−1, . . . , x−n+2) ≤ e−
ρ
d

û

E[e−
ρ
d

ÛT |T <∞]
, (3.4)

where Ûk = Uk−
∑n−2

l=0 αlXk−l (with αl = dl+1 + · · ·+ dn−1), û = Û0 and T = inf{k|Uk < 0}.

Proof. Let Φk be the sigma-algebra generated by {Xi, i = 1, 2, . . . , k}. We then have

E[e−
ρ
d
Ûk |Φk−1] = E[e−

ρ
d
(Uk−

Pn−2
l=0 αlXk−l)|Φk−1] = E[e−

ρ
d
(Uk−1+c−Yk−

Pn−2
l=0 αlXk−l)|Φk−1].

Now

Yk +
n−2∑

l=0

αlXk−l = Xk +
n−1∑
j=1

djXk−j +
n−2∑

l=0

αlXk−l = dXk +
n−2∑

l=0

αlXk−1−l.

Hence,

E[e−
ρ
d
Ûk |Φk−1] = E[e−

ρ
d
(Uk−1+c−dXk−

Pn−2
l=0 αlXk−1−l)|Φk−1]

= e−
ρ
d
c E[eρX ]E[e−

ρ
d
(Uk−1−

Pn−2
l=0 αlXk−1−l)|Φk−1]

= e−
ρ
d
Ûk−1 by assumption.

This shows that the stochastic process {e− ρ
d
Ûk , k ≥ 1} is a martingale.

Let m be a positive integer. By the Optional Stopping Theorem (considering the stopping

time T ∧m = min{T,m}), we get

e−
ρ
d
Û0 = E[e−

ρ
d
ÛT∧m ]

= E[e−
ρ
d
ÛT IT≤m] + E[e−

ρ
d
ÛmIT>m].

≥ E[e−
ρ
d
ÛT |T ≤ m] Pr[T ≤ m]

Letting m→∞ gives

e−
ρ
d
Û0 ≥ E[e−

ρ
d
ÛT |T <∞]ψ(u, x0, . . . , x−n+2),

which completes the proof.

This result can easily be generalized to the case of a constant compound interest rate

i ≥ 0, as is shown in the appendix.
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Corollary 3.2. Under the assumptions of Theorem 3.1, if there exists a positive constant b

such that Pr[X < b] = 1, then we have the equality

ψ(u, x0, x−1, . . . , x−n+2) =
e−

ρ
d

û

E[e−
ρ
d

ÛT |T <∞]
. (3.5)

Proof. Let α =
∑n−2

l=0 αl. Since Pr[X < b] = 1, we have

e−
ρ
d
Ûm IT>m < e

ρ
d

b α.

Furthermore, the random variables e−
ρ
d
Ûm IT>m converge to zero pointwise for m → ∞.

Hence, we get

lim
m→∞

E[e−
ρ
d
ÛmIT>m] = 0.

It is well-known that if the security loading η = c
dµX

−1 is positive and if E[erX ] exists for

all r in the neighborhood of the origin and is steep (which in particular implies light-tailed

claims), the Lundberg equation e−rµX(1+η)E[erX ] = 1 admits only one positive solution.

3.2 Lundberg-type inequalities for the ultimate ruin probability

Lundberg-type inequalities can be derived from Theorem 3.1. Note that from ÛT < 0 we

have E[e−
ρ
d
ÛT |T <∞] > 1. Hence, we get the next Proposition.

Proposition 3.1. Under the assumptions of Theorem 3.1, we have

ψ(u, x0, . . . , x−n+2) ≤ e−
ρ
d

û. (3.6)

Now, let us define θ as the largest positive integer such that Pr[T ≥ θ] = 1. Of course,

when there is no constant b such that Pr[X < b] = 1, we always have θ = 1. Then, the

following Proposition, based on (3.4), improves the upper bound (3.6).

Proposition 3.2. Under the assumptions of Theorem 3.1, we have

ψ(u, x0, . . . , x−n+2) ≤ e−
ρ
d

(ū+αµX). (3.7)

where

ū =

{
u−∑n−3

l=0 αlx̃−l − αn−2x−n+2 if θ ≤ n− 2,

û otherwise,
(3.8)

with x̃−l = max(µX , x−l).
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Proof. As e−
ρ
d
UT > 1, we have

ψ(u, x0, . . . , x−n+2) ≤ e−
ρ
d
û

E[e
ρ
d

Pn−2
l=0 αlXT−l |T <∞]

≤ e−
ρ
d
û

e
ρ
d

Pn−2
l=0 αl E[XT−l|T<∞]

by Jensen’s inequality. Since E[Xi|T <∞] ≥ min(xθ−n+2, . . . , x0) for θ − n+ 2 ≤ i ≤ 0, we

have E[XT−l|T <∞] ≥ γ for l = 0, . . . , n− 2, where

γ =

{
min(xθ−n+2, . . . , x0, µX) if θ ≤ n− 2

µX otherwise
.

Hence

ψ(u, x0, . . . , x−n+2) ≤ e−
ρ
d

(û+αγ), (3.9)

where we recognize (3.7) for θ > n−2. If θ ≤ n−2, it suffices to see that ψ(u, x0, . . . , x−n+2) ≤
ψ(u, x̃0, . . . , x̃−n+3, x−n+2).

Note that for θ ≤ n− 2, we have from (3.7) and (3.9)

ψ(u, x0, . . . , x−n+2) ≤ min(e−
ρ
d

(û+αγ), e−
ρ
d

(ū+αµX)). (3.10)

But since ū ≤ û and γ ≤ µX , we always have e−
ρ
d

(û+αγ) ≥ e−
ρ
d

(ū+αµX).

Clearly, the upper bound e−
ρ
d

(ū+αµX) is tighter than e−
ρ
d

û.

Based on a recursive formula for finite-time ruin probabilities, one can derive another

Lundberg-type bound for ψ(u, x0, . . . , x−n+2). Denote by ψk(u, x0, . . . , x−n+2) the ruin prob-

ability up to time k. Clearly, for k = 1, 2, . . . , we have

ψk+1(u, x0, . . . , x−n+2) = F̄X(u+ c−
n−1∑
i=1

di x1−i)

+

∫ u+c−Pn−1
i=1 di x1−i

0

ψk(u+ c− x−
n−1∑
i=1

di x1−i, x, x0, . . . , x−n+3) dFX(x).

(3.11)

Hence, we have the next upper bound.

Proposition 3.3. Assume that

e
ρ
d

Pn−2
i=1 di+1x1−i E[e

ρ
d
X(1+d1)I[X≤u+c−Pn−1

i=1 di x1−i]
] ≤ E[eρXI[X≤u+c−Pn−1

i=1 di x1−i]
]. (3.12)

Then,

ψ(u, x0, . . . , x−n+2) ≤ βe−
ρ
d
(u−Pn−1

i=1 di x1−i), (3.13)

where

β−1 = inf
t≥0

∫∞
t
eρydFX(y)

e
ρ
d
tF̄X(t)

. (3.14)
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Proof. For any x ≥ 0, we have

F̄X(x) =

(∫∞
x
eρydFX(y)

e
ρ
d
xF̄X(x)

)−1

e−
ρ
d
x

∫ ∞

x

eρydFX(y)

≤ βe−
ρ
d
x

∫ ∞

x

eρydFX(y)

≤ βe−
ρ
d
xE[eρX ].

Then,

ψ1(u, x0, . . . , x−n+2) ≤ βe−
ρ
d
(u+c−Pn−1

i=1 di x1−i)E[eρX ]

= βe−
ρ
d
(u−Pn−1

i=1 di x1−i).

Now, let us assume that

ψk(u, x0, . . . , x−n+2) ≤ βe−
ρ
d
(u−Pn−1

i=1 di x1−i).

Thus

ψk(u+ c− x−
n−1∑
i=1

di x1−i, x, x0, . . . , x−n+3)

≤ βe−
ρ
d
(u+c−x−Pn−1

i=1 di x1−i−d1x−Pn−2
i=1 di+1 x1−i)

= βe−
ρ
d
(u+c−Pn−1

i=1 di x1−i) e
ρ
d
(x(1+d1)+

Pn−2
i=1 di+1 x1−i).

Furthermore,

F̄X(u+ c−
n−1∑
i=1

di x1−i) ≤ βe−
ρ
d
(u+c−Pn−1

i=1 di x1−i)

∫ ∞

u+c−Pn−1
i=1 di x1−i

eρx dFX(x)

Consequently, by (3.11), we have

ψk+1(u, x0, . . . , x−n+2) ≤ βe−
ρ
d
(u+c−Pn−1

i=1 di x1−i)

( ∫ ∞

u+c−Pn−1
i=1 di x1−i

eρxdFX(x) +

∫ u+c−Pn−1
i=1 di x1−i

0

e
ρ
d
(x(1+d1)+

Pn−2
i=1 di+1 x1−i)dFX(x)

)

By (3.12) we then get

ψk+1(u, x0, . . . , x−n+2) ≤ βe−
ρ
d
(u−Pn−1

i=1 di x1−i).

Letting k →∞, we obtain (3.13).

Obviously, for n = 2, the assumption (3.12) is always fulfilled. For larger n, let us rewrite

equation (3.12) as

E[e
ρ
d
(X(1+d1)+d2x0+d3x−1+···+dn−1x−n+3)I[X≤u+c−Pn−1

i=1 di x1−i]
]

≤ E[e
ρ
d
(X(1+d1)+d2X+d3X+···+dn−1X)I[X≤u+c−Pn−1

i=1 di x1−i]
]. (3.15)
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It then becomes clear that for any distribution of X, condition (3.12) is fulfilled for at least

small past claim amounts x1−n+2, x1−n+3, . . . , x0 (for instance trivially for

x1−n+2 = x1−n+3 = · · · = x0 = 0).

The new bound (3.13) can be more precise than (3.7). For example, if X ∼ Exp(τ), then

β−1 = inf
t≥0

( τ

τ − ρ

)
eρ(1− 1

d
)t =

τ

τ − ρ
. (3.16)

So, for instance, with n = 2, (3.7) becomes

e−
ρ
d

(
u− d1

τ

)
(3.17)

while (3.13) is (τ − ρ

τ

)
e−

ρ
d
(u−d1x0), (3.18)

which for some values of parameters τ , η (and hence ρ), d1 and x0, is smaller than (3.17).

4 Asymptotic behavior for the ultimate ruin probabil-

ity

4.1 The light-tailed case

The following result makes clear that the exponential decay rate of the numerator in (3.4)

provides the significant asymptotic behavior in u of ψ(u, x0, . . . , x−n+2).

Theorem 4.1. Assume that the assumptions of Theorem 3.1 are fulfilled. Hence, given

that for all m, the sum of the first m annual losses Zm =
∑m

i=1(Yi − c) possesses a finite

moment-generating function E[erZm ] for 0 < r < r0, where r0 >
ρ
d
, we have

lim
u→∞

1

u
lnψ(u, x0, . . . , x−n+2) = −ρ

d
. (4.1)

Proof. By the Gärtner-Ellis Theorem from large deviations (cf. Glynn and Whitt (1994),

Nyrhinen (1998) or Müller and Pflug (2001)), one only has to show that:

(A1) κ(r) := limm→∞ 1
m
κm(r) = limm→∞ 1

m
lnE[erZm ] exists for 0 < r < r0,

(A2) κ(ρ
d
) = 0 and κ′(ρ

d
) > 0.

First of all, we prove that

lim
m→∞

1

m
lnE[erZm ] = −r c+ lnE[erdX ].
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Obviously, we have

lim
m→∞

1

m
lnE[erZm ] = −r c+ lim

m→∞
1

m
lnE[er

Pm
i=1 Yi ].

Now

lim
m→∞

m∑
i=1

Yi = d lim
m→∞

m∑
i=1

Xi +
n−1∑
i=1

n−1∑

k=i

dk xi−k.

Hence,

lim
m→∞

1

m
lnE[er

Pm
i=1 Yi ] = lim

m→∞
1

m
lnE[erd

Pm
i=1 Xi er

Pn−1
i=1

Pn−1
k=i dk xi−k ]

= lim
m→∞

1

m

(
r

n−1∑
i=1

n−1∑

k=i

dk xi−k

)
+ lim

m→∞
1

m
ln

m∏
i=1

E[erdXi ]

= lim
m→∞

1

m
lnE[erdX ]m = lnE[erdX ].

Now, notice that limm→∞ 1
m

lnE[erZm ] = lnh(r), where h(r) := e−r cE[erdX ]. Since h(ρ
d
) = 1

by (3.3), we have κ(ρ
d
) = lnh(ρ

d
) = 0 and κ′(ρ

d
) > 0.

Given that ruin occurs, one can also look at the path leading to ruin. Using large

deviations results of Glynn and Whitt (1994), we can see that for large u, ruin occurs

roughly at time bu/κ′(ρ
d
)c. Furthermore, the cumulant generating function of Zbu/κ′( ρ

d
)c is

asymptotically changed from κbu/κ′( ρ
d
)c(r) to

κbu/κ′( ρ
d
)c

(
r +

ρ

d

)
− κbu/κ′( ρ

d
)c

(
ρ

d

)
= −r bu/κ′(ρ

d

)c c+ r

n−1∑
i=1

n−1∑

k=i

dk xi−k

+(bu/κ′(ρ
d

)c − n+ 1) ln
E[e(r+ ρ

d
)dX ]

E[eρX ]

+
n−1∑
i=1

ln
E[e(r+ ρ

d
)(1+

Pi−1
j=1 dj)X ]

E[e
ρ
d
(1+

Pi−1
j=1 dj)X ]

. (4.2)

Consequently, given that ruin occurs, on an asymptotic level the claim size distribution X

is exponentially tilted by the (time-dependent) factor ρ(k), k = 1, 2, . . . , bu/κ′(ρ
d
)c, with

ρ(k) =

{
ρ, for k = 1, . . . , bu/κ′(ρ

d
)c − n+ 1

ρ
d
(1 +

∑bu/κ′( ρ
d
)c−k

j=1 dj), for k = bu/κ′(ρ
d
)c − n+ 2, . . . , bu/κ′(ρ

d
)c . (4.3)

This suggests that a sample path leading to ruin asymptotically locally (at time k) has a

drift δ(k) given by

δ(k) = c− d
E[Xeρ(k)X ]

E[eρ(k)X ]
< 0. (4.4)

Notice that the drift can be interpreted as constant during the time period (1, bu/κ′(ρ
d
)c −

n+ 1) and increasing at the end, i.e. during the time period (bu/κ′(ρ
d
)c − n+ 2, bu/κ′(ρ

d
)c).
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However, since u→∞, this last time period is negligible compared to the first one.

Define the surplus process

Ũk = ũ+ k c− d

k∑
i=1

Xi, (4.5)

which for ũ = û corresponds to the associated non-delayed classical version of (2.2). Denote

by ψ̃(ũ) the corresponding ultimate ruin probability. Clearly, the Lundberg coefficient ρ̃ of

this associated non-delayed process is equal to ρ
d
. Thus, the logarithmic asymptotic behavior

of ψ̃(ũ) and ψ(u, x0, . . . , x−n+2) is of the same order. This consitutes an insensitivity property

of the model. Due to the short-range dependence induced by the claim settlement, only the

distribution of dX is important asymptotically, and not the way to settle the claims (cf.

Brémaud (2000), Yuen et al. (2005) and Ganesh and Torrisi (2006) for a similar conclusion

for other delayed-claims risk models).

Remark. A large deviation estimate (consistent with (4.1)) can be obtained for the finite-

time ruin probability for our risk process in the presence of IBNR claims. Indeed, let

ψ(u,M) = Pr[T < M ] denote the probability of ruin up to time horizon M and define

for a > 0 the quantity ra as the unique solution of κ′(ra) = 1
a
. Then, invoking Nyrhinen

(1998),

lim
u→∞

1

u
lnψ(u, a u) = −ρa, (4.6)

with

ρa =

{
ra − a κ(ra), a < 1

κ′( ρ
d
)

ρ
d
, a ≥ 1

κ′( ρ
d
)

. (4.7)

4.2 The heavy-tailed case

Let us now consider subexponential claim distributions of regularly varying type. By defini-

tion, a d.f. F on R+ belongs to the class R of regularly varying distributions (F ∈ R(−δ)) if

there exists some constant 0 ≤ δ <∞ and a positive slowly varying function L(x) such that

F (x) = x−δL(x). (4.8)

Let B0(x) = 1
µZ

∫∞
x
FZ(z)dz, where Z = dX − c. If FX ∈ R(−δ − 1) for some δ > 0, then

lim
u→∞

ψ(u, x0, . . . , x−n+2)

B0(u)
= 1. (4.9)

To show (4.9), we adapt the proof of Proposition 3.1 in Ganesh and Torrisi (2006) to our

setting.
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We know by Theorem 2(B) in Veraverbeke (1977) that

lim
ũ→∞

ψ̃(ũ)

B0(ũ)
= 1. (4.10)

Clearly, with ũ = û, Ũk ≤ Uk for all k = 1, 2, . . . . Hence, the inequality

ψ(u, x0, . . . , x−n+2) ≤ ψ̃(û) (4.11)

holds. Consequently, we can write

lim
u→∞

sup
ψ(u, x0, . . . , x−n+2)

B0(u)
≤ lim

u→∞
ψ̃(û)

B0(u)
= lim

u→∞
ψ̃(û)

B0(û)
lim

u→∞
B0(û)

B0(u)
= lim

u→∞
B0(û)

B0(u)
(4.12)

by (4.10). Since FX ∈ R(−δ − 1) (and hence FZ ∈ R(−δ − 1)), it follows from Karamata’s

Theorem (see Embrechts et al. (1997)) that B0 ∈ R(−δ), which implies that

lim
u→∞

B0(û)

B0(u)
= 1. (4.13)

Now, notice that for k ≥ n
k∑

i=1

Yi ≥
k−n+1∑

i=1

dXi. (4.14)

This implies that

ψ(u, x0, . . . , x−n+2) = Pr[
k∑

i=1

Yi − k c > u for some k > 0]

≥ Pr[
k∑

i=1

Yi − k c > u for some k ≥ n]

≥ Pr[
k−n+1∑

i=1

dXi − k c > u for some k ≥ n]

= Pr[
k−n+1∑

i=1

dXi − (k − n− 1) c > u+ (n+ 1) c for somek ≥ n]

= Pr[
k∑

i=1

dXi − k c > u+ (n+ 1) c for some k > 0]

= ψ̃(u+ (n+ 1) c).

(4.15)

Consequently, we get

lim
u→∞

inf
ψ(u, x0, . . . , x−n+2)

B0(u)
≥ lim

u→∞
ψ̃(u+ (n+ 1) c)

B0(u)

= lim
u→∞

ψ̃(u+ (n+ 1) c)

B0(u+ (n+ 1) c)
lim

u→∞
B0(u+ (n+ 1) c)

B0(u)
= 1

(4.16)
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by (4.10) and B0 ∈ R(−δ).
So, as in the light-tailed claims case, the ruin probability is asymptotically insensitive to the

way to settle the claims.

5 Impact of IBNR dynamics on ultimate ruin proba-

bility

Inequality (4.11) may indicate that the IBNR dynamics decrease the risk for the insurer, as

the occurred claims are paid out more evenly over time. But a “fairer” comparison in terms

of the invoked initial capital is in order.

Let us return to the equivalent representation (2.3) for the annual claim amount and let

Y
(n)
i denote the annual claim amount for year i and β

(n)
j the proportion of Si paid after j

years (given that the number of years needed to settle the claims equals n). So, if we define

ψ(n)(u) = E[ψ(u, S0, . . . , S−n+2)], we want to know whether the inequality

ψ(n)(u) ≤ ψ̃(u) (5.1)

holds true for all u ≥ 0.

Before going on, let us briefly recall some notions on ordering (for more details, see e.g.

Denuit et al. (2005)). Given two random variables X and Y , X precedes Y in convex order

(denoted by X ≤cx Y ), if the inequality E[g(X)] ≤ E[g(Y )] holds for any convex function g

such that the expectations exist. Next, consider a vector ~x ∈ Rk
+, and its elements ranked

in decreasing order x(1:k) ≥ x(2:k) ≥ · · · ≥ x(k:k). Given ~x, ~y ∈ Rk
+, the vector ~y is said to

majorize ~x (denoted by ~x ≤maj ~y), if

j∑
i=1

x(i:k) ≤
j∑

i=1

y(i:k) for j = 1, 2, . . . , k − 1 and
k∑

i=1

xi =
k∑

i=1

yi. (5.2)

Proposition 5.1. For all n = 2, 3, . . . and k = 1, 2, . . . , we have

k∑
i=1

Y
(n)
i ≤cx

k∑
i=1

Y
(1)
i . (5.3)

Proof. From (2.3), we get
k∑

i=1

Y
(n)
i =

k∑
i=−n+2

γ
(n)
i,k Si,
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with

γ
(n)
i,k =





∑min(n,k−i+1)
j=−i+1 β

(n)
j if i ≤ 0

1 if 1 ≤ i ≤ k − n+ 1∑k+1−i
j=1 β

(n)
j , if i ≥ k − n+ 2

.

For any n ≥ 2, define the (k + n − 1)-dimensional vectors ~φ = (~0, γ
(1)
1,k, γ

(1)
2,k, . . . , γ

(1)
k,k) and

~χ = (γ
(n)
−n+2,k, γ

(n)
−n+3,k, . . . , γ

(n)
k,k ). Obviously,

~χ ≤maj
~φ.

Indeed,
∑k+n−1

i=1 χi =
∑k

i=−n+2 γ
(n)
i,k =

∑k+n−1
i=1 φi =

∑k
i=1 γ

(1)
i,k = k. Secondly γ

(n)
i,k ≤ 1 and

γ
(1)
i,k = 1. Consequently, by the i.i.d. property of the Si’s and Property 3.4.48 of Denuit et

al. (2005), we get

k∑
i=1

Y
(1)
i =

k+n−1∑
i=1

φi Si−n+1 ≥cx

k+n−1∑
i=1

χi Si−n+1 =
k∑

i=1

Y
(n)
i .

This result seems to be in favor of (5.1). However, notice that in discrete-time risk models,

there does not exist any result showing that the classification in the convex order sense of

the aggregate claims processes implies the classification of the ruin probabilities.

Let us examine the inequality (5.1) by some numerical illustrations. Consider motor

third-party liability insurance (MTPL) and pecuniary losses insurance (PL). On the basis of

run-off triangles containing incremental claims for the entire Belgian market over the period

1992 − 2006 for motor TPL insurance and over the period 1997 − 2006 for the pecuniary

losses insurance, we get:

MTPL insurance
β1 β2 β3 β4 β5 β6 β7

37.79% 26.13% 8.50% 5.94% 4.78% 3.91% 2.96%
β8 β9 β10 β11 β12 β13 β14

2.43% 2.03% 1.51% 1.44% 1.09% 0.89% 0.60%

PL insurance
β1 β2 β3 β4 β5 β6 β7 β8 β9

57.46% 37.19% 3.60% 1.34% 0.25% 0.09% 0.04% 0.01% 0.02%

The reader interested in the methods to determine the βj is referred to Kaas et al. (2008).

Let us assume that E[S] = 10. Based on 1 000 000 simulations of the claims amounts

Si for i = −12, . . . , 500 for S ∼ Gam(q1, q2) (E[Gam(q1, q2)] = q1 q2 and V[Gam(q1, q2)] =

q1 q
2
2) and alternatively for S ∼ LogN(µ, σ) (E[LogN(µ, σ)] = eµ+σ2/2 and V[LogN(µ, σ)] =

e2µ+σ2
(eσ2 − 1)), we have the following numerical results for η = 0.1:
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S ∼ Gam(q1, q2), with E[S] = 10
u = 0 u = 50 u = 100 u = 150 u = 200

ψ(MTPL)(u) 0.7035 0.2547 0.1048 0.0428 0.0175
q1 = 1 ψ(PL)(u) 0.7900 0.3094 0.1288 0.0528 0.0212

ψ̃(u) 0.8234 0.3405 0.1407 0.0578 0.0235
u = 0 u = 25 u = 50 u = 75 u = 100

ψ(MTPL)(u) 0.6213 0.2150 0.0892 0.0369 0.0154
q1 = 2 ψ(PL)(u) 0.7363 0.2923 0.1203 0.0493 0.0199

ψ̃(u) 0.7797 0.3269 0.1360 0.0569 0.0236
u = 0 u = 15 u = 30 u = 45 u = 60

ψ(MTPL)(u) 0.5608 0.2042 0.0908 0.0411 0.0186
q1 = 3 ψ(PL)(u) 0.6931 0.2999 0.1348 0.0607 0.0278

ψ̃(u) 0.7460 0.3442 0.1559 0.0701 0.0319
u = 0 u = 15 u = 30 u = 45 u = 60

ψ(MTPL)(u) 0.5140 0.1377 0.0474 0.0164 0.0059
q1 = 4 ψ(PL)(u) 0.6572 0.2166 0.0744 0.0258 0.0091

ψ̃(u) 0.7182 0.2580 0.0892 0.0312 0.0110
u = 0 u = 10 u = 20 u = 30 u = 40

ψ(MTPL)(u) 0.4752 0.1504 0.0608 0.0250 0.0104
q1 = 5 ψ(PL)(u) 0.6315 0.2475 0.1041 0.0436 0.0183

ψ̃(u) 0.6951 0.3009 0.1255 0.0521 0.0216
u = 0 u = 10 u = 20 u = 30 u = 40

ψ(MTPL)(u) 0.4399 0.1108 0.0377 0.0132 0.0046
q1 = 6 ψ(PL)(u) 0.6055 0.1980 0.0693 0.0233 0.0080

ψ̃(u) 0.6736 0.2449 0.0853 0.0295 0.0106
u = 0 u = 10 u = 20 u = 30 u = 40

ψ(MTPL)(u) 0.4083 0.0838 0.0236 0.0066 0.0019
q1 = 7 ψ(PL)(u) 0.5861 0.1624 0.0469 0.0135 0.0041

ψ̃(u) 0.6520 0.1995 0.0583 0.0165 0.0048
u = 0 u = 5 u = 10 u = 15 u = 20

ψ(MTPL)(u) 0.3830 0.1358 0.0638 0.0308 0.0150
q1 = 8 ψ(PL)(u) 0.5618 0.2612 0.1283 0.0630 0.0313

ψ̃(u) 0.6385 0.3347 0.1660 0.0816 0.0404
u = 0 u = 5 u = 10 u = 15 u = 20

ψ(MTPL)(u) 0.3606 0.1138 0.0491 0.0201 0.0087
q1 = 9 ψ(PL)(u) 0.5431 0.2276 0.1023 0.0465 0.0209

ψ̃(u) 0.6221 0.2943 0.1324 0.0613 0.0275
u = 0 u = 5 u = 10 u = 15 u = 20

ψ(MTPL)(u) 0.3390 0.0953 0.0369 0.0150 0.0061
q1 = 10 ψ(PL)(u) 0.5243 0.2012 0.0848 0.0363 0.0159

ψ̃(u) 0.6077 0.2701 0.1118 0.0461 0.0190
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S ∼ LogN(µ, σ), with E[S] = 10
u = 0 u = 1000 u = 2000 u = 3000 u = 4000

ψ(MTPL)(u) 0.7444 0.1908 0.0800 0.0400 0.0228
µ = 0.2 ψ(PL)(u) 0.7777 0.1989 0.0825 0.0411 0.0233

ψ̃(u) 0.7950 0.2022 0.0837 0.0417 0.0236
u = 0 u = 1000 u = 2000 u = 3000 u = 4000

ψ(MTPL)(u) 0.7552 0.1672 0.0619 0.0282 0.0151
µ = 0.4 ψ(PL)(u) 0.8037 0.1756 0.0641 0.0292 0.0157

ψ̃(u) 0.8067 0.1775 0.0649 0.0297 0.0159
u = 0 u = 1000 u = 2000 u = 3000 u = 4000

ψ(MTPL)(u) 0.7645 0.1397 0.0445 0.0182 0.0090
µ = 0.6 ψ(PL)(u) 0.7988 0.1464 0.0462 0.0187 0.0093

ψ̃(u) 0.8168 0.1491 0.0469 0.0191 0.0095
u = 0 u = 500 u = 1000 u = 1500 u = 2000

ψ(MTPL)(u) 0.7725 0.2469 0.1084 0.0526 0.0278
µ = 0.8 ψ(PL)(u) 0.8065 0.2607 0.1138 0.0549 0.0289

ψ̃(u) 0.8252 0.2665 0.1162 0.0560 0.0295
u = 0 u = 500 u = 1000 u = 1500 u = 2000

ψ(MTPL)(u) 0.7767 0.2037 0.0746 0.0308 0.0143
µ = 1.0 ψ(PL)(u) 0.8122 0.2166 0.0787 0.0322 0.0150

ψ̃(u) 0.8317 0.2224 0.0807 0.0329 0.0153
u = 0 u = 250 u = 500 u = 750 u = 1000

ψ(MTPL)(u) 0.7782 0.3060 0.1515 0.0781 0.0420
µ = 1.2 ψ(PL)(u) 0.8155 0.3291 0.1625 0.0836 0.0449

ψ̃(u) 0.8353 0.3379 0.1667 0.0858 0.0461
u = 0 u = 250 u = 500 u = 750 u = 1000

ψ(MTPL)(u) 0.7745 0.2388 0.0937 0.0382 0.0166
µ = 1.4 ψ(PL)(u) 0.8140 0.2587 0.1012 0.0413 0.0178

ψ̃(u) 0.8370 0.2671 0.1044 0.0427 0.0184
u = 0 u = 125 u = 250 u = 375 u = 500

ψ(MTPL)(u) 0.7638 0.3072 0.1509 0.0760 0.0387
µ = 1.6 ψ(PL)(u) 0.8081 0.3400 0.1669 0.0838 0.0428

ψ̃(u) 0.8325 0.3544 0.1738 0.0872 0.0447
u = 0 u = 125 u = 250 u = 375 u = 500

ψ(MTPL)(u) 0.7405 0.1863 0.0591 0.0193 0.0064
µ = 1.8 ψ(PL)(u) 0.7905 0.2126 0.0675 0.0220 0.0072

ψ̃(u) 0.8188 0.2246 0.0712 0.0230 0.0076
u = 0 u = 50 u = 100 u = 150 u = 200

ψ(MTPL)(u) 0.6883 0.2129 0.0817 0.0320 0.0124
µ = 2.0 ψ(PL)(u) 0.7517 0.2565 0.0991 0.0388 0.0151

ψ̃(u) 0.7887 0.2791 0.1072 0.0420 0.0166
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As expected, the inequality (5.1) is satisfied in these examples since we always have

ψ(MTPL)(u) ≤ ψ̃(u) and ψ(PL)(u) ≤ ψ̃(u). However, in the heavy-tailed case the gap is

less pronounced. This is in accordance with the intuition that for heavy tails ruin is the

consequence of one big jump, so that the smoothing effect of the annual claim amounts

induced by the IBNR dynamics is not as strong as in the light-tailed case.

6 Conclusion

In this paper, we have studied a discrete time risk process describing the surplus of an

insurance company at the end of each calendar year. Our analysis explicitly allows for

a certain delay in claim settlement, a situation commonly encountered in practice. After

having derived Lundberg-type inequalities for the ultimate ruin probability, the asymptotic

behavior of this probability has been studied, separately for the light-tailed case and for

the heavy-tailed case. We have also compared the situations with and without delay in

claim settlement, giving some quantitative results as well as numerical illustrations to what

extent the insurance company can benefit from the delay in claim settlement in terms of ruin

probabilities when the link factors are given. As outlined in the introduction, the analysis of

this paper also has potential applications in other businesses and growth models, including

the determination of health care provisions and general warranty management processes.

Acknowledgements

The authors would like to express their gratitude to anonymous referees and to the editor

whose comments have been useful to revise a previous version of the present work. Michel

Denuit and Julien Trufin acknowledge the financial support of the Communauté française
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7 Appendix

Let us consider the following dynamics for the insurer’s surplus

U
(i)
k = u+ c

k∑
j=1

(1 + i)j −
k∑

j=1

Yj(1 + i)k−j. (7.1)

The premiums are assumed to be paid at the beginning of each year while the claims are

assumed to be paid at the end of the year. Denote by

ψ(i)(u, x0, x−1, . . . , x−n+2)

= Pr[U
(i)
k < 0 for some k|U (i)

0 = u,X0 = x0, X−1 = x−1, . . . , X−n+2 = x−n+2]

the ultimate ruin probability relative to the new surplus dynamics (7.1). One can prove that

if there exists a positive constant ρ(i) such that

e−
ρ(i)

d
c E[e

ρ(i)

d
vX(1+

Pn−1
j=1 vjdj)] = 1, (7.2)

then we have

ψ(i)(u, x0, . . . , x−n+2) ≤ e−
ρ(i)

d
û(i)

E[e−
ρ(i)

d
vT Û

(i)
T |T <∞]

, (7.3)

where v = 1
1+i

, Û
(i)
k = U

(i)
k − ∑n−2

l=0 Xk−l

∑n−l−1
j=1 vjdl+j, with û(i) = Û

(i)
0 and T = inf{k :

U
(i)
k < 0}. Indeed, we have

E[e−
ρ(i)

d
vkÛ

(i)
k |Φk−1] = E[e−

ρ(i)

d
vk(U

(i)
k−1(1+i)+c(1+i)−Yk−

Pn−2
l=0 Xk−l

Pn−l−1
j=1 vjdl+j)|Φk−1]

= E[e−
ρ(i)

d
vk−1(U

(i)
k−1+c−v[Yk+

Pn−2
l=0 Xk−l

Pn−l−1
j=1 vjdl+j ])|Φk−1], (7.4)

where Φk is the sigma-algebra generated by {Xi, i = 1, 2, . . . , k}. Now

v[Yk +
n−2∑

l=0

Xk−l

n−l−1∑
j=1

vjdl+j] = Xk

(
v +

n−1∑
j=1

vj+1dj

)
+

n−2∑

l=0

Xk−1−l

n−l−1∑
j=1

vjdl+j. (7.5)

Thus, we get

E[e−
ρ(i)

d
vkÛ

(i)
k |Φk−1] = E[e−

ρ(i)

d
vk−1(c−vX(1+

Pn−1
j=1 vjdj))]

E[e−
ρ(i)

d
vk−1(U

(i)
k−1−

Pn−2
l=0 Xk−1−l

Pn−l−1
j=1 vjdl+j)|Φk−1]

= E[e−
ρ(i)

d
vk−1(c−vX(1+

Pn−1
j=1 vjdj))] e−

ρ(i)

d
vk−1Û

(i)
k−1 . (7.6)

19



Furthermore, as i ≥ 0, it suffices to note (cf. Yang (1998)) that

E[e−
ρ(i)

d
vk−1(c−vX(1+

Pn−1
j=1 vjdj))] = E[e(−

ρ(i)

d
(c−vX(1+

Pn−1
j=1 vjdj)))

vk−1

]

≤ E[e−
ρ(i)

d
(c−vX(1+

Pn−1
j=1 vjdj))]v

k−1

(7.7)

by Jensen’s inequality. Consequently, {e− ρ(i)

d
vkÛ

(i)
k , k ≥ 0} is a supermartingale, since

E[e−
ρ(i)

d
(c−vX(1+

Pn−1
j=1 vjdj))] = 1 (7.8)

by assumption. In view of the final arguments of the proof of Theorem 3.1, the inequality

(7.3) follows.
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